![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moeuOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of moeu 2603 as of 14-Oct-2022. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
moeuOLD | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃*𝑥𝜑)) | |
2 | nexmo 2552 | . . . 4 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | |
3 | pm2.6 183 | . . . 4 ⊢ ((¬ ∃𝑥𝜑 → ∃*𝑥𝜑) → ((∃𝑥𝜑 → ∃*𝑥𝜑) → ∃*𝑥𝜑)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ((∃𝑥𝜑 → ∃*𝑥𝜑) → ∃*𝑥𝜑) |
5 | 1, 4 | impbii 201 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) |
6 | anclb 541 | . 2 ⊢ ((∃𝑥𝜑 → ∃*𝑥𝜑) ↔ (∃𝑥𝜑 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑))) | |
7 | df-eu 2587 | . . . 4 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
8 | 7 | bicomi 216 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ ∃!𝑥𝜑) |
9 | 8 | imbi2i 328 | . 2 ⊢ ((∃𝑥𝜑 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
10 | 5, 6, 9 | 3bitri 289 | 1 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∃wex 1823 ∃*wmo 2549 ∃!weu 2586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-mo 2551 df-eu 2587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |