MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moimiOLD Structured version   Visualization version   GIF version

Theorem moimiOLD 2628
Description: Obsolete version of moimi 2627 as of 9-May-2023. The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
moimiOLD.1 (𝜑𝜓)
Assertion
Ref Expression
moimiOLD (∃*𝑥𝜓 → ∃*𝑥𝜑)

Proof of Theorem moimiOLD
StepHypRef Expression
1 moim 2626 . 2 (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))
2 moimiOLD.1 . 2 (𝜑𝜓)
31, 2mpg 1798 1 (∃*𝑥𝜓 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ∃*wmo 2620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 209  df-ex 1781  df-mo 2622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator