MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2curryd Structured version   Visualization version   GIF version

Theorem mpt2curryd 7626
Description: The currying of an operation given in maps-to notation, splitting the operation (function of two arguments) into a function of the first argument, producing a function over the second argument. (Contributed by AV, 27-Oct-2019.)
Hypotheses
Ref Expression
mpt2curryd.f 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
mpt2curryd.c (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
mpt2curryd.n (𝜑𝑌 ≠ ∅)
Assertion
Ref Expression
mpt2curryd (𝜑 → curry 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpt2curryd
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cur 7624 . 2 curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧})
2 mpt2curryd.c . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶𝑉)
3 mpt2curryd.f . . . . . . . 8 𝐹 = (𝑥𝑋, 𝑦𝑌𝐶)
43dmmpt2ga 7471 . . . . . . 7 (∀𝑥𝑋𝑦𝑌 𝐶𝑉 → dom 𝐹 = (𝑋 × 𝑌))
52, 4syl 17 . . . . . 6 (𝜑 → dom 𝐹 = (𝑋 × 𝑌))
65dmeqd 5527 . . . . 5 (𝜑 → dom dom 𝐹 = dom (𝑋 × 𝑌))
7 mpt2curryd.n . . . . . 6 (𝜑𝑌 ≠ ∅)
8 dmxp 5545 . . . . . 6 (𝑌 ≠ ∅ → dom (𝑋 × 𝑌) = 𝑋)
97, 8syl 17 . . . . 5 (𝜑 → dom (𝑋 × 𝑌) = 𝑋)
106, 9eqtrd 2840 . . . 4 (𝜑 → dom dom 𝐹 = 𝑋)
1110mpteq1d 4932 . . 3 (𝜑 → (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝑋 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}))
12 df-mpt 4924 . . . . 5 (𝑦𝑌𝐶) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝐶)}
133mpt2fun 6988 . . . . . . . 8 Fun 𝐹
14 funbrfv2b 6457 . . . . . . . 8 (Fun 𝐹 → (⟨𝑥, 𝑦𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
1513, 14mp1i 13 . . . . . . 7 ((𝜑𝑥𝑋) → (⟨𝑥, 𝑦𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
165adantr 468 . . . . . . . . . 10 ((𝜑𝑥𝑋) → dom 𝐹 = (𝑋 × 𝑌))
1716eleq2d 2871 . . . . . . . . 9 ((𝜑𝑥𝑋) → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌)))
18 opelxp 5346 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌) ↔ (𝑥𝑋𝑦𝑌))
1917, 18syl6bb 278 . . . . . . . 8 ((𝜑𝑥𝑋) → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ (𝑥𝑋𝑦𝑌)))
2019anbi1d 617 . . . . . . 7 ((𝜑𝑥𝑋) → ((⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ ((𝑥𝑋𝑦𝑌) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
21 an32 628 . . . . . . . . 9 (((𝑥𝑋𝑦𝑌) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ ((𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ∧ 𝑦𝑌))
22 ancom 450 . . . . . . . . 9 (((𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ∧ 𝑦𝑌) ↔ (𝑦𝑌 ∧ (𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2321, 22bitri 266 . . . . . . . 8 (((𝑥𝑋𝑦𝑌) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝑦𝑌 ∧ (𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
24 ibar 520 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧 ↔ (𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2524bicomd 214 . . . . . . . . . . . 12 (𝑥𝑋 → ((𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
2625adantl 469 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ((𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
2726adantr 468 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
28 df-ov 6873 . . . . . . . . . . . . 13 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
29 nfcv 2948 . . . . . . . . . . . . . . . . 17 𝑎𝐶
30 nfcv 2948 . . . . . . . . . . . . . . . . 17 𝑏𝐶
31 nfcv 2948 . . . . . . . . . . . . . . . . . 18 𝑥𝑏
32 nfcsb1v 3744 . . . . . . . . . . . . . . . . . 18 𝑥𝑎 / 𝑥𝐶
3331, 32nfcsb 3746 . . . . . . . . . . . . . . . . 17 𝑥𝑏 / 𝑦𝑎 / 𝑥𝐶
34 nfcsb1v 3744 . . . . . . . . . . . . . . . . 17 𝑦𝑏 / 𝑦𝑎 / 𝑥𝐶
35 csbeq1a 3737 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
36 csbeq1a 3737 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏𝑎 / 𝑥𝐶 = 𝑏 / 𝑦𝑎 / 𝑥𝐶)
3735, 36sylan9eq 2860 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝐶 = 𝑏 / 𝑦𝑎 / 𝑥𝐶)
3829, 30, 33, 34, 37cbvmpt2 6960 . . . . . . . . . . . . . . . 16 (𝑥𝑋, 𝑦𝑌𝐶) = (𝑎𝑋, 𝑏𝑌𝑏 / 𝑦𝑎 / 𝑥𝐶)
393, 38eqtri 2828 . . . . . . . . . . . . . . 15 𝐹 = (𝑎𝑋, 𝑏𝑌𝑏 / 𝑦𝑎 / 𝑥𝐶)
4039a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐹 = (𝑎𝑋, 𝑏𝑌𝑏 / 𝑦𝑎 / 𝑥𝐶))
4135eqcomd 2812 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎𝑎 / 𝑥𝐶 = 𝐶)
4241equcoms 2116 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥𝑎 / 𝑥𝐶 = 𝐶)
4342csbeq2dv 4189 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥𝑏 / 𝑦𝑎 / 𝑥𝐶 = 𝑏 / 𝑦𝐶)
44 csbeq1a 3737 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏𝐶 = 𝑏 / 𝑦𝐶)
4544eqcomd 2812 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏𝑏 / 𝑦𝐶 = 𝐶)
4645equcoms 2116 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦𝑏 / 𝑦𝐶 = 𝐶)
4743, 46sylan9eq 2860 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑥𝑏 = 𝑦) → 𝑏 / 𝑦𝑎 / 𝑥𝐶 = 𝐶)
4847adantl 469 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑦𝑌) ∧ (𝑎 = 𝑥𝑏 = 𝑦)) → 𝑏 / 𝑦𝑎 / 𝑥𝐶 = 𝐶)
49 simpr 473 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥𝑋)
5049adantr 468 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑥𝑋)
51 simpr 473 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
52 rsp2 3124 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋𝑦𝑌 𝐶𝑉 → ((𝑥𝑋𝑦𝑌) → 𝐶𝑉))
532, 52syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐶𝑉))
5453impl 445 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐶𝑉)
5540, 48, 50, 51, 54ovmpt2d 7014 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝑥𝐹𝑦) = 𝐶)
5628, 55syl5eqr 2854 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝐹‘⟨𝑥, 𝑦⟩) = 𝐶)
5756eqeq1d 2808 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧𝐶 = 𝑧))
58 eqcom 2813 . . . . . . . . . . 11 (𝐶 = 𝑧𝑧 = 𝐶)
5957, 58syl6bb 278 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝐹‘⟨𝑥, 𝑦⟩) = 𝑧𝑧 = 𝐶))
6027, 59bitrd 270 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ 𝑧 = 𝐶))
6160pm5.32da 570 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑦𝑌 ∧ (𝑥𝑋 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)) ↔ (𝑦𝑌𝑧 = 𝐶)))
6223, 61syl5bb 274 . . . . . . 7 ((𝜑𝑥𝑋) → (((𝑥𝑋𝑦𝑌) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝑦𝑌𝑧 = 𝐶)))
6315, 20, 623bitrrd 297 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑦𝑌𝑧 = 𝐶) ↔ ⟨𝑥, 𝑦𝐹𝑧))
6463opabbidv 4910 . . . . 5 ((𝜑𝑥𝑋) → {⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝐶)} = {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧})
6512, 64syl5req 2853 . . . 4 ((𝜑𝑥𝑋) → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧} = (𝑦𝑌𝐶))
6665mpteq2dva 4938 . . 3 (𝜑 → (𝑥𝑋 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
6711, 66eqtrd 2840 . 2 (𝜑 → (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
681, 67syl5eq 2852 1 (𝜑 → curry 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wne 2978  wral 3096  csb 3728  c0 4116  cop 4376   class class class wbr 4844  {copab 4906  cmpt 4923   × cxp 5309  dom cdm 5311  Fun wfun 6091  cfv 6097  (class class class)co 6870  cmpt2 6872  curry ccur 7622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-fv 6105  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-1st 7394  df-2nd 7395  df-cur 7624
This theorem is referenced by:  mpt2curryvald  7627  curfv  33700
  Copyright terms: Public domain W3C validator