![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt2difsnif | Structured version Visualization version GIF version |
Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.) |
Ref | Expression |
---|---|
mpt2difsnif | ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4550 | . . . . 5 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}) ↔ (𝑖 ∈ 𝐴 ∧ 𝑖 ≠ 𝑋)) | |
2 | neneq 2975 | . . . . 5 ⊢ (𝑖 ≠ 𝑋 → ¬ 𝑖 = 𝑋) | |
3 | 1, 2 | simplbiim 500 | . . . 4 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}) → ¬ 𝑖 = 𝑋) |
4 | 3 | adantr 474 | . . 3 ⊢ ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗 ∈ 𝐵) → ¬ 𝑖 = 𝑋) |
5 | 4 | iffalsed 4318 | . 2 ⊢ ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗 ∈ 𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐷) |
6 | 5 | mpt2eq3ia 6997 | 1 ⊢ (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∖ cdif 3789 ifcif 4307 {csn 4398 ↦ cmpt2 6924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-v 3400 df-dif 3795 df-if 4308 df-sn 4399 df-oprab 6926 df-mpt2 6927 |
This theorem is referenced by: smadiadetglem1 20883 |
Copyright terms: Public domain | W3C validator |