MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2difsnif Structured version   Visualization version   GIF version

Theorem mpt2difsnif 7030
Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.)
Assertion
Ref Expression
mpt2difsnif (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)

Proof of Theorem mpt2difsnif
StepHypRef Expression
1 eldifsn 4550 . . . . 5 (𝑖 ∈ (𝐴 ∖ {𝑋}) ↔ (𝑖𝐴𝑖𝑋))
2 neneq 2975 . . . . 5 (𝑖𝑋 → ¬ 𝑖 = 𝑋)
31, 2simplbiim 500 . . . 4 (𝑖 ∈ (𝐴 ∖ {𝑋}) → ¬ 𝑖 = 𝑋)
43adantr 474 . . 3 ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗𝐵) → ¬ 𝑖 = 𝑋)
54iffalsed 4318 . 2 ((𝑖 ∈ (𝐴 ∖ {𝑋}) ∧ 𝑗𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐷)
65mpt2eq3ia 6997 1 (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 386   = wceq 1601  wcel 2107  wne 2969  cdif 3789  ifcif 4307  {csn 4398  cmpt2 6924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-v 3400  df-dif 3795  df-if 4308  df-sn 4399  df-oprab 6926  df-mpt2 6927
This theorem is referenced by:  smadiadetglem1  20883
  Copyright terms: Public domain W3C validator