![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt2eq3dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mpt2eq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpt2eq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2eq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
2 | 1 | 3ad2ant1 1164 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpt2eq3dva 6953 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ↦ cmpt2 6880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-oprab 6882 df-mpt2 6883 |
This theorem is referenced by: seqomeq12 7788 cantnfval 8815 seqeq2 13059 seqeq3 13060 relexpsucnnr 14106 lsmfval 18366 phssip 20327 mamuval 20517 matsc 20582 marrepval0 20693 marrepval 20694 marepvval0 20698 marepvval 20699 submaval0 20712 mdetr0 20737 mdet0 20738 mdetunilem7 20750 mdetunilem8 20751 madufval 20769 maduval 20770 maducoeval2 20772 madutpos 20774 madugsum 20775 madurid 20776 minmar1val0 20779 minmar1val 20780 pmat0opsc 20831 pmat1opsc 20832 mat2pmatval 20857 cpm2mval 20883 decpmatid 20903 pmatcollpw2lem 20910 pmatcollpw3lem 20916 mply1topmatval 20937 mp2pm2mplem1 20939 mp2pm2mplem4 20942 ttgval 26112 smatfval 30377 ofceq 30675 reprval 31208 finxpeq1 33721 matunitlindflem1 33894 idfusubc 42665 digfval 43190 |
Copyright terms: Public domain | W3C validator |