![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt2ex | Structured version Visualization version GIF version |
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mpt2ex.1 | ⊢ 𝐴 ∈ V |
mpt2ex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mpt2ex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2ex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mpt2ex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3105 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | eqid 2777 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | mpt2exxg 7524 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
6 | 1, 3, 5 | mp2an 682 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∀wral 3089 Vcvv 3397 ↦ cmpt2 6924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 |
This theorem is referenced by: qexALT 12111 ruclem13 15375 vdwapfval 16079 prdsco 16514 imasvsca 16566 homffval 16735 comfffval 16743 comffval 16744 comfffn 16749 comfeq 16751 oppccofval 16761 monfval 16777 sectffval 16795 invffval 16803 cofu1st 16928 cofu2nd 16930 cofucl 16933 natfval 16991 fuccofval 17004 fucco 17007 coafval 17099 setcco 17118 catchomfval 17133 catccofval 17135 catcco 17136 estrcco 17155 xpcval 17203 xpchomfval 17205 xpccofval 17208 xpcco 17209 1stf1 17218 1stf2 17219 2ndf1 17221 2ndf2 17222 1stfcl 17223 2ndfcl 17224 prf1 17226 prf2fval 17227 prfcl 17229 prf1st 17230 prf2nd 17231 evlf2 17244 evlf1 17246 evlfcl 17248 curf1fval 17250 curf11 17252 curf12 17253 curf1cl 17254 curf2 17255 curfcl 17258 hof1fval 17279 hof2fval 17281 hofcl 17285 yonedalem3 17306 mgmnsgrpex 17805 sgrpnmndex 17806 grpsubfval 17851 mulgfval 17929 symgplusg 18192 lsmfval 18437 pj1fval 18491 dvrfval 19071 psrmulr 19781 psrvscafval 19787 evlslem2 19908 mamufval 20595 mvmulfval 20753 isphtpy 23188 pcofval 23217 q1pval 24350 r1pval 24353 motplusg 25893 midf 26124 ismidb 26126 ttgval 26224 ebtwntg 26331 ecgrtg 26332 elntg 26333 wwlksnon 27200 wspthsnon 27201 clwwlknonmpt2 27491 vsfval 28060 dipfval 28129 smatfval 30459 lmatval 30477 qqhval 30616 dya2iocuni 30943 sxbrsigalem5 30948 sitmval 31009 signswplusg 31232 reprval 31290 mclsrcl 32057 mclsval 32059 ldualfvs 35274 paddfval 35935 tgrpopr 36885 erngfplus 36940 erngfmul 36943 erngfplus-rN 36948 erngfmul-rN 36951 dvafvadd 37152 dvafvsca 37154 dvaabl 37162 dvhfvadd 37229 dvhfvsca 37238 djafvalN 37272 djhfval 37535 hlhilip 38086 mendplusgfval 38696 mendmulrfval 38698 mendvscafval 38701 hoidmvval 41700 cznrng 42952 cznnring 42953 rngchomfvalALTV 42981 rngccofvalALTV 42984 rngccoALTV 42985 ringchomfvalALTV 43044 ringccofvalALTV 43047 ringccoALTV 43048 rrx2xpreen 43437 lines 43449 spheres 43464 |
Copyright terms: Public domain | W3C validator |