![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt2exga | Structured version Visualization version GIF version |
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpt2exga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpt2exg 7481 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 Vcvv 3385 ↦ cmpt2 6880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 |
This theorem is referenced by: mptmpt2opabbrd 7484 el2mpt2csbcl 7486 bropopvvv 7492 bropfvvvv 7494 prdsip 16436 imasds 16488 setchomfval 17043 setccofval 17046 estrchomfval 17080 estrccofval 17083 lsmvalx 18367 mamuval 20517 mamudm 20519 marrepfval 20692 marrepval0 20693 marrepval 20694 marepvfval 20697 marepvval 20699 submaval0 20712 submaval 20713 maduval 20770 minmar1val0 20779 minmar1val 20780 mat2pmatval 20857 mat2pmatf 20861 m2cpmf 20875 cpm2mval 20883 decpmatval0 20897 decpmatmul 20905 pmatcollpw2lem 20910 pmatcollpw3lem 20916 mply1topmatval 20937 mp2pm2mplem1 20939 xkoptsub 21786 grpodivfval 27914 pstmval 30454 sxsigon 30771 cndprobval 31012 dfrngc2 42771 funcrngcsetc 42797 dfringc2 42817 funcringcsetc 42834 lmod1lem1 43075 lmod1lem2 43076 lmod1lem3 43077 lmod1lem4 43078 lmod1lem5 43079 |
Copyright terms: Public domain | W3C validator |