![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt2ndm0 | Structured version Visualization version GIF version |
Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017.) |
Ref | Expression |
---|---|
mpt2ndm0.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) |
Ref | Expression |
---|---|
mpt2ndm0 | ⊢ (¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉𝐹𝑊) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2ndm0.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
2 | df-mpt2 6910 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | eqtri 2849 | . . . 4 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} |
4 | 3 | dmeqi 5557 | . . 3 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} |
5 | dmoprabss 7002 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ 𝑧 = 𝐶)} ⊆ (𝑋 × 𝑌) | |
6 | 4, 5 | eqsstri 3860 | . 2 ⊢ dom 𝐹 ⊆ (𝑋 × 𝑌) |
7 | nssdmovg 7076 | . 2 ⊢ ((dom 𝐹 ⊆ (𝑋 × 𝑌) ∧ ¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) → (𝑉𝐹𝑊) = ∅) | |
8 | 6, 7 | mpan 683 | 1 ⊢ (¬ (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉𝐹𝑊) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ⊆ wss 3798 ∅c0 4144 × cxp 5340 dom cdm 5342 (class class class)co 6905 {coprab 6906 ↦ cmpt2 6907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-xp 5348 df-dm 5352 df-iota 6086 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 |
This theorem is referenced by: 2mpt20 7142 elovmpt3imp 7150 el2mpt2csbcl 7513 bropopvvv 7519 supp0prc 7562 brovex 7613 swrdnznd 13702 pfxnndmnd 13751 fullfunc 16918 fthfunc 16919 natfval 16958 evlval 19884 matbas0 20583 matrcl 20585 marrepfval 20734 marepvfval 20739 submafval 20753 minmar1fval 20820 hmeofval 21932 nghmfval 22896 wspthsn 27147 iswwlksnon 27152 iswspthsnon 27155 clwwlkn 27366 clwwlkneq0 27371 clwwlknon 27461 clwwlk0on0 27465 clwwlknon0 27466 |
Copyright terms: Public domain | W3C validator |