MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2snif Structured version   Visualization version   GIF version

Theorem mpt2snif 7014
Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
Assertion
Ref Expression
mpt2snif (𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)

Proof of Theorem mpt2snif
StepHypRef Expression
1 elsni 4414 . . . 4 (𝑖 ∈ {𝑋} → 𝑖 = 𝑋)
21adantr 474 . . 3 ((𝑖 ∈ {𝑋} ∧ 𝑗𝐵) → 𝑖 = 𝑋)
32iftrued 4314 . 2 ((𝑖 ∈ {𝑋} ∧ 𝑗𝐵) → if(𝑖 = 𝑋, 𝐶, 𝐷) = 𝐶)
43mpt2eq3ia 6980 1 (𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1658  wcel 2166  ifcif 4306  {csn 4397  cmpt2 6907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-v 3416  df-if 4307  df-sn 4398  df-oprab 6909  df-mpt2 6910
This theorem is referenced by:  mdetrsca2  20778  mdetrlin2  20781  mdetunilem5  20790  smadiadetglem2  20847
  Copyright terms: Public domain W3C validator