![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt2v | Structured version Visualization version GIF version |
Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
Ref | Expression |
---|---|
mpt2v | ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt2 6799 | . 2 ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)} | |
2 | vex 3354 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3354 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | pm3.2i 447 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
5 | 4 | biantrur 516 | . . 3 ⊢ (𝑧 = 𝐶 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)) |
6 | 5 | oprabbii 6858 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)} |
7 | 1, 6 | eqtr4i 2796 | 1 ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 {coprab 6795 ↦ cmpt2 6796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-v 3353 df-oprab 6798 df-mpt2 6799 |
This theorem is referenced by: 1st2val 7344 2nd2val 7345 |
Copyright terms: Public domain | W3C validator |