![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nanbi1OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nanbi1 1622 as of 19-Oct-2022. (Contributed by Anthony Hart, 1-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nanbi1OLD | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi1 626 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) | |
2 | 1 | notbid 310 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ (𝜑 ∧ 𝜒) ↔ ¬ (𝜓 ∧ 𝜒))) |
3 | df-nan 1610 | . 2 ⊢ ((𝜑 ⊼ 𝜒) ↔ ¬ (𝜑 ∧ 𝜒)) | |
4 | df-nan 1610 | . 2 ⊢ ((𝜓 ⊼ 𝜒) ↔ ¬ (𝜓 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 306 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ⊼ wnan 1609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-nan 1610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |