![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nannanOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nannan 1616 as of 19-Oct-2022. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 7-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nannanOLD | ⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan 389 | . 2 ⊢ ((𝜑 → ¬ (𝜓 ⊼ 𝜒)) ↔ ¬ (𝜑 ∧ (𝜓 ⊼ 𝜒))) | |
2 | nanan 1611 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (𝜓 ⊼ 𝜒)) | |
3 | 2 | imbi2i 328 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ (𝜑 → ¬ (𝜓 ⊼ 𝜒))) |
4 | df-nan 1610 | . 2 ⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ ¬ (𝜑 ∧ (𝜓 ⊼ 𝜒))) | |
5 | 1, 3, 4 | 3bitr4ri 296 | 1 ⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ⊼ wnan 1609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-nan 1610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |