MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nannotOLD Structured version   Visualization version   GIF version

Theorem nannotOLD 1568
Description: Obsolete proof of nannot 1567 as of 19-Oct-2022. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nannotOLD 𝜓 ↔ (𝜓𝜓))

Proof of Theorem nannotOLD
StepHypRef Expression
1 df-nan 1558 . . 3 ((𝜓𝜓) ↔ ¬ (𝜓𝜓))
2 anidm 560 . . 3 ((𝜓𝜓) ↔ 𝜓)
31, 2xchbinx 326 . 2 ((𝜓𝜓) ↔ ¬ 𝜓)
43bicomi 216 1 𝜓 ↔ (𝜓𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wa 386  wnan 1557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-nan 1558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator