Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrclOLD Structured version   Visualization version   GIF version

Theorem nbgrclOLD 26570
 Description: Obsolete version of nbgrcl 26569 as of 12-Feb-2022. (Contributed by AV, 6-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nbgrclOLD (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺))

Proof of Theorem nbgrclOLD
Dummy variables 𝑔 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nbgr 26567 . . 3 NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})
21mpt2xeldm 7575 . 2 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → (𝐺 ∈ V ∧ 𝑋𝐺 / 𝑔(Vtx‘𝑔)))
3 csbfv 6457 . . . 4 𝐺 / 𝑔(Vtx‘𝑔) = (Vtx‘𝐺)
43eleq2i 2870 . . 3 (𝑋𝐺 / 𝑔(Vtx‘𝑔) ↔ 𝑋 ∈ (Vtx‘𝐺))
54biimpi 208 . 2 (𝑋𝐺 / 𝑔(Vtx‘𝑔) → 𝑋 ∈ (Vtx‘𝐺))
62, 5simpl2im 498 1 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2157  ∃wrex 3090  {crab 3093  Vcvv 3385  ⦋csb 3728   ∖ cdif 3766   ⊆ wss 3769  {csn 4368  {cpr 4370  ‘cfv 6101  (class class class)co 6878  Vtxcvtx 26231  Edgcedg 26282   NeighbVtx cnbgr 26566 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-nbgr 26567 This theorem is referenced by:  nbgrelOLD  26576
 Copyright terms: Public domain W3C validator