![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrssvwo2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of nbgrssvwo2 26600 as of 12-Feb-2022. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nbgrssovtxOLD.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrssvwo2OLD | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑁)) → (𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑀, 𝑁})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrssovtxOLD.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | nbgrssovtxOLD 26602 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑁})) |
3 | df-nel 3075 | . . . . . 6 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑁) ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑁)) | |
4 | disjsn 4436 | . . . . . 6 ⊢ (((𝐺 NeighbVtx 𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑁)) | |
5 | 3, 4 | sylbb2 230 | . . . . 5 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑁) → ((𝐺 NeighbVtx 𝑁) ∩ {𝑀}) = ∅) |
6 | reldisj 4215 | . . . . 5 ⊢ ((𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑁}) → (((𝐺 NeighbVtx 𝑁) ∩ {𝑀}) = ∅ ↔ (𝐺 NeighbVtx 𝑁) ⊆ ((𝑉 ∖ {𝑁}) ∖ {𝑀}))) | |
7 | 5, 6 | syl5ib 236 | . . . 4 ⊢ ((𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑁}) → (𝑀 ∉ (𝐺 NeighbVtx 𝑁) → (𝐺 NeighbVtx 𝑁) ⊆ ((𝑉 ∖ {𝑁}) ∖ {𝑀}))) |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (𝑀 ∉ (𝐺 NeighbVtx 𝑁) → (𝐺 NeighbVtx 𝑁) ⊆ ((𝑉 ∖ {𝑁}) ∖ {𝑀}))) |
9 | 8 | imp 396 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑁)) → (𝐺 NeighbVtx 𝑁) ⊆ ((𝑉 ∖ {𝑁}) ∖ {𝑀})) |
10 | prcom 4456 | . . . 4 ⊢ {𝑀, 𝑁} = {𝑁, 𝑀} | |
11 | 10 | difeq2i 3923 | . . 3 ⊢ (𝑉 ∖ {𝑀, 𝑁}) = (𝑉 ∖ {𝑁, 𝑀}) |
12 | difpr 4522 | . . 3 ⊢ (𝑉 ∖ {𝑁, 𝑀}) = ((𝑉 ∖ {𝑁}) ∖ {𝑀}) | |
13 | 11, 12 | eqtri 2821 | . 2 ⊢ (𝑉 ∖ {𝑀, 𝑁}) = ((𝑉 ∖ {𝑁}) ∖ {𝑀}) |
14 | 9, 13 | syl6sseqr 3848 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑁)) → (𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑀, 𝑁})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∉ wnel 3074 ∖ cdif 3766 ∩ cin 3768 ⊆ wss 3769 ∅c0 4115 {csn 4368 {cpr 4370 ‘cfv 6101 (class class class)co 6878 Vtxcvtx 26231 NeighbVtx cnbgr 26566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-nbgr 26567 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |