![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nexmoOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nexmo 2548 as of 16-Oct-2022. (Contributed by BJ, 30-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nexmoOLD | ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1744 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
2 | pm2.21 121 | . . . . . . 7 ⊢ (¬ 𝜑 → (𝜑 → 𝑥 = 𝑦)) | |
3 | 2 | alrimiv 1886 | . . . . . 6 ⊢ (¬ 𝜑 → ∀𝑦(𝜑 → 𝑥 = 𝑦)) |
4 | 3 | alimi 1774 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑦)) |
5 | alcom 2095 | . . . . 5 ⊢ (∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
6 | 4, 5 | sylib 210 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
7 | 6 | 19.2d 1935 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
8 | df-mo 2547 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
9 | 7, 8 | sylibr 226 | . 2 ⊢ (∀𝑥 ¬ 𝜑 → ∃*𝑥𝜑) |
10 | 1, 9 | sylbir 227 | 1 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1505 ∃wex 1742 ∃*wmo 2545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-11 2093 |
This theorem depends on definitions: df-bi 199 df-ex 1743 df-mo 2547 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |