![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfan1OLDOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nfan1 2183 as of 7-Jul-2022. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1828 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfan1OLDOLD | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 387 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
2 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | nfim1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | nfnt 1901 | . . . . 5 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
6 | 2, 5 | nfim1 2182 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ¬ 𝜓) |
7 | 6 | nfn 1902 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) |
8 | 1, 7 | nfxfr 1897 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 Ⅎwnf 1827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-12 2163 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ex 1824 df-nf 1828 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |