![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcriv | Structured version Visualization version GIF version |
Description: Consequence of the not-free predicate, similiar to nfcri 2943. Requires 𝑦 and 𝐴 be disjoint, but is not based on ax-13 2344. (Contributed by Wolf Lammen, 13-May-2023.) |
Ref | Expression |
---|---|
nfcriv.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcriv | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcriv.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcr 2938 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1765 ∈ wcel 2081 Ⅎwnfc 2933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-12 2141 |
This theorem depends on definitions: df-bi 208 df-ex 1762 df-nfc 2935 |
This theorem is referenced by: nfcrii 2942 nfnfc 2959 cleqf 2978 nfccdeq 3703 csbgfi 3829 dfss2f 3880 iunxsngf 4913 fedgmullem2 30630 |
Copyright terms: Public domain | W3C validator |