![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcvfOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nfcvf 2951 as of 10-May-2023. (Contributed by Mario Carneiro, 8-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfcvfOLD | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2925 | . 2 ⊢ Ⅎ𝑥𝑧 | |
2 | nfcv 2925 | . 2 ⊢ Ⅎ𝑧𝑦 | |
3 | id 22 | . 2 ⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) | |
4 | 1, 2, 3 | dvelimc 2950 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1506 Ⅎwnfc 2909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-cleq 2764 df-clel 2839 df-nfc 2911 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |