![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeud2OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nfeud2 2611 as of 14-Oct-2022. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by Wolf Lammen, 4-Oct-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfeud2OLD.1 | ⊢ Ⅎ𝑦𝜑 |
nfeud2OLD.2 | ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfeud2OLD | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2592 | . 2 ⊢ (∃!𝑦𝜓 ↔ ∃𝑧∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) | |
2 | nfv 1957 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
3 | nfeud2OLD.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfeud2OLD.2 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | |
5 | nfeqf1 2343 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) | |
6 | 5 | adantl 475 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 = 𝑧) |
7 | 4, 6 | nfbid 1949 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
8 | 3, 7 | nfald2 2411 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
9 | 2, 8 | nfexd 2305 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑧∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
10 | 1, 9 | nfxfrd 1898 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∀wal 1599 ∃wex 1823 Ⅎwnf 1827 ∃!weu 2586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-mo 2551 df-eu 2587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |