MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfs1vOLD Structured version   Visualization version   GIF version

Theorem nfs1vOLD 2589
Description: Obsolete version of nfs1v 2285 as of 28-Jul-2022. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfs1vOLD 𝑥[𝑦 / 𝑥]𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfs1vOLD
StepHypRef Expression
1 hbs1 2286 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
21nf5i 2189 1 𝑥[𝑦 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wnf 1863  [wsb 2059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-10 2184  ax-12 2213
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-ex 1860  df-nf 1864  df-sb 2060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator