Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetalem4 Structured version   Visualization version   GIF version

Theorem noetalem4 32829
Description: Lemma for noeta 32831. Bound the birthday of 𝑍 above. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypotheses
Ref Expression
noetalem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetalem4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ( bday 𝑍) ⊆ suc ( bday “ (𝐴𝐵)))
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetalem4
StepHypRef Expression
1 noetalem.1 . . . . . . 7 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21nosupno 32812 . . . . . 6 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
3 bdayval 32764 . . . . . 6 (𝑆 No → ( bday 𝑆) = dom 𝑆)
42, 3syl 17 . . . . 5 ((𝐴 No 𝐴 ∈ V) → ( bday 𝑆) = dom 𝑆)
51nosupbday 32814 . . . . 5 ((𝐴 No 𝐴 ∈ V) → ( bday 𝑆) ⊆ suc ( bday 𝐴))
64, 5eqsstrrd 3927 . . . 4 ((𝐴 No 𝐴 ∈ V) → dom 𝑆 ⊆ suc ( bday 𝐴))
76adantr 481 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → dom 𝑆 ⊆ suc ( bday 𝐴))
8 unss1 4076 . . 3 (dom 𝑆 ⊆ suc ( bday 𝐴) → (dom 𝑆 ∪ suc ( bday 𝐵)) ⊆ (suc ( bday 𝐴) ∪ suc ( bday 𝐵)))
97, 8syl 17 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (dom 𝑆 ∪ suc ( bday 𝐵)) ⊆ (suc ( bday 𝐴) ∪ suc ( bday 𝐵)))
10 simpll 763 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐴 No )
11 simplr 765 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐴 ∈ V)
12 simprr 769 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐵 ∈ V)
13 noetalem.2 . . . . . 6 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
141, 13noetalem1 32826 . . . . 5 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
1510, 11, 12, 14syl3anc 1364 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝑍 No )
16 bdayval 32764 . . . 4 (𝑍 No → ( bday 𝑍) = dom 𝑍)
1715, 16syl 17 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ( bday 𝑍) = dom 𝑍)
1813dmeqi 5659 . . . 4 dom 𝑍 = dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
19 dmun 5665 . . . . 5 dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
20 1oex 7961 . . . . . . . . 9 1o ∈ V
2120snnz 4618 . . . . . . . 8 {1o} ≠ ∅
22 dmxp 5681 . . . . . . . 8 ({1o} ≠ ∅ → dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆))
2321, 22ax-mp 5 . . . . . . 7 dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆)
2423uneq2i 4057 . . . . . 6 (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∪ (suc ( bday 𝐵) ∖ dom 𝑆))
25 undif2 4339 . . . . . 6 (dom 𝑆 ∪ (suc ( bday 𝐵) ∖ dom 𝑆)) = (dom 𝑆 ∪ suc ( bday 𝐵))
2624, 25eqtri 2819 . . . . 5 (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∪ suc ( bday 𝐵))
2719, 26eqtri 2819 . . . 4 dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∪ suc ( bday 𝐵))
2818, 27eqtri 2819 . . 3 dom 𝑍 = (dom 𝑆 ∪ suc ( bday 𝐵))
2917, 28syl6eq 2847 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ( bday 𝑍) = (dom 𝑆 ∪ suc ( bday 𝐵)))
30 imaundi 5884 . . . . . . 7 ( bday “ (𝐴𝐵)) = (( bday 𝐴) ∪ ( bday 𝐵))
3130unieqi 4754 . . . . . 6 ( bday “ (𝐴𝐵)) = (( bday 𝐴) ∪ ( bday 𝐵))
32 uniun 4764 . . . . . 6 (( bday 𝐴) ∪ ( bday 𝐵)) = ( ( bday 𝐴) ∪ ( bday 𝐵))
3331, 32eqtri 2819 . . . . 5 ( bday “ (𝐴𝐵)) = ( ( bday 𝐴) ∪ ( bday 𝐵))
34 suceq 6131 . . . . 5 ( ( bday “ (𝐴𝐵)) = ( ( bday 𝐴) ∪ ( bday 𝐵)) → suc ( bday “ (𝐴𝐵)) = suc ( ( bday 𝐴) ∪ ( bday 𝐵)))
3533, 34ax-mp 5 . . . 4 suc ( bday “ (𝐴𝐵)) = suc ( ( bday 𝐴) ∪ ( bday 𝐵))
36 imassrn 5817 . . . . . . 7 ( bday 𝐴) ⊆ ran bday
37 bdayfo 32791 . . . . . . . 8 bday : No onto→On
38 forn 6461 . . . . . . . 8 ( bday : No onto→On → ran bday = On)
3937, 38ax-mp 5 . . . . . . 7 ran bday = On
4036, 39sseqtri 3924 . . . . . 6 ( bday 𝐴) ⊆ On
41 ssorduni 7356 . . . . . 6 (( bday 𝐴) ⊆ On → Ord ( bday 𝐴))
4240, 41ax-mp 5 . . . . 5 Ord ( bday 𝐴)
43 imassrn 5817 . . . . . . 7 ( bday 𝐵) ⊆ ran bday
4443, 39sseqtri 3924 . . . . . 6 ( bday 𝐵) ⊆ On
45 ssorduni 7356 . . . . . 6 (( bday 𝐵) ⊆ On → Ord ( bday 𝐵))
4644, 45ax-mp 5 . . . . 5 Ord ( bday 𝐵)
47 ordsucun 7396 . . . . 5 ((Ord ( bday 𝐴) ∧ Ord ( bday 𝐵)) → suc ( ( bday 𝐴) ∪ ( bday 𝐵)) = (suc ( bday 𝐴) ∪ suc ( bday 𝐵)))
4842, 46, 47mp2an 688 . . . 4 suc ( ( bday 𝐴) ∪ ( bday 𝐵)) = (suc ( bday 𝐴) ∪ suc ( bday 𝐵))
4935, 48eqtri 2819 . . 3 suc ( bday “ (𝐴𝐵)) = (suc ( bday 𝐴) ∪ suc ( bday 𝐵))
5049a1i 11 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → suc ( bday “ (𝐴𝐵)) = (suc ( bday 𝐴) ∪ suc ( bday 𝐵)))
519, 29, 503sstr4d 3935 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ( bday 𝑍) ⊆ suc ( bday “ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  {cab 2775  wne 2984  wral 3105  wrex 3106  Vcvv 3437  cdif 3856  cun 3857  wss 3859  c0 4211  ifcif 4381  {csn 4472  cop 4478   cuni 4745   class class class wbr 4962  cmpt 5041   × cxp 5441  dom cdm 5443  ran crn 5444  cres 5445  cima 5446  Ord word 6065  Oncon0 6066  suc csuc 6068  cio 6187  ontowfo 6223  cfv 6225  crio 6976  1oc1o 7946  2oc2o 7947   No csur 32756   <s cslt 32757   bday cbday 32758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ord 6069  df-on 6070  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-1o 7953  df-2o 7954  df-no 32759  df-slt 32760  df-bday 32761
This theorem is referenced by:  noetalem5  32830
  Copyright terms: Public domain W3C validator