Step | Hyp | Ref
| Expression |
1 | | reeanv 3308 |
. . . 4
⊢
(∃𝑢 ∈
𝐴 ∃𝑝 ∈ 𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) ↔ (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) |
2 | | simplrr 765 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → 𝑝 ∈ 𝐴) |
3 | | simplrl 764 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → 𝑢 ∈ 𝐴) |
4 | 2, 3 | ifcld 4395 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴) |
5 | | iftrue 4356 |
. . . . . . . . . . . 12
⊢ (𝑢 <s 𝑝 → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑝) |
6 | 5 | adantr 473 |
. . . . . . . . . . 11
⊢ ((𝑢 <s 𝑝 ∧ ((𝐴 ⊆ No
∧ (𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑝) |
7 | | simpll 754 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → 𝐴 ⊆ No
) |
8 | 7, 3 | sseldd 3859 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → 𝑢 ∈ No
) |
9 | 7, 2 | sseldd 3859 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → 𝑝 ∈ No
) |
10 | | sltso 32708 |
. . . . . . . . . . . . . 14
⊢ <s Or
No |
11 | | soasym 5356 |
. . . . . . . . . . . . . 14
⊢ (( <s
Or No ∧ (𝑢 ∈ No
∧ 𝑝 ∈ No )) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢)) |
12 | 10, 11 | mpan 677 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈
No ∧ 𝑝 ∈
No ) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢)) |
13 | 8, 9, 12 | syl2anc 576 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢)) |
14 | 13 | impcom 399 |
. . . . . . . . . . 11
⊢ ((𝑢 <s 𝑝 ∧ ((𝐴 ⊆ No
∧ (𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ¬ 𝑝 <s 𝑢) |
15 | 6, 14 | eqnbrtrd 4947 |
. . . . . . . . . 10
⊢ ((𝑢 <s 𝑝 ∧ ((𝐴 ⊆ No
∧ (𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢) |
16 | | iffalse 4359 |
. . . . . . . . . . . 12
⊢ (¬
𝑢 <s 𝑝 → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑢) |
17 | 16 | adantr 473 |
. . . . . . . . . . 11
⊢ ((¬
𝑢 <s 𝑝 ∧ ((𝐴 ⊆ No
∧ (𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → if(𝑢 <s 𝑝, 𝑝, 𝑢) = 𝑢) |
18 | | sonr 5348 |
. . . . . . . . . . . . . 14
⊢ (( <s
Or No ∧ 𝑢 ∈ No )
→ ¬ 𝑢 <s 𝑢) |
19 | 10, 18 | mpan 677 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈
No → ¬ 𝑢
<s 𝑢) |
20 | 8, 19 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ¬ 𝑢 <s 𝑢) |
21 | 20 | adantl 474 |
. . . . . . . . . . 11
⊢ ((¬
𝑢 <s 𝑝 ∧ ((𝐴 ⊆ No
∧ (𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ¬ 𝑢 <s 𝑢) |
22 | 17, 21 | eqnbrtrd 4947 |
. . . . . . . . . 10
⊢ ((¬
𝑢 <s 𝑝 ∧ ((𝐴 ⊆ No
∧ (𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢) |
23 | 15, 22 | pm2.61ian 799 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢) |
24 | | sonr 5348 |
. . . . . . . . . . . . . 14
⊢ (( <s
Or No ∧ 𝑝 ∈ No )
→ ¬ 𝑝 <s 𝑝) |
25 | 10, 24 | mpan 677 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈
No → ¬ 𝑝
<s 𝑝) |
26 | 9, 25 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ¬ 𝑝 <s 𝑝) |
27 | 26 | adantl 474 |
. . . . . . . . . . 11
⊢ ((𝑢 <s 𝑝 ∧ ((𝐴 ⊆ No
∧ (𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ¬ 𝑝 <s 𝑝) |
28 | 6, 27 | eqnbrtrd 4947 |
. . . . . . . . . 10
⊢ ((𝑢 <s 𝑝 ∧ ((𝐴 ⊆ No
∧ (𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝) |
29 | | simpl 475 |
. . . . . . . . . . 11
⊢ ((¬
𝑢 <s 𝑝 ∧ ((𝐴 ⊆ No
∧ (𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ¬ 𝑢 <s 𝑝) |
30 | 17, 29 | eqnbrtrd 4947 |
. . . . . . . . . 10
⊢ ((¬
𝑢 <s 𝑝 ∧ ((𝐴 ⊆ No
∧ (𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝) |
31 | 28, 30 | pm2.61ian 799 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝) |
32 | | simpr1 1174 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴) |
33 | | simprl2 1199 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
34 | 33 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
35 | | simpr2 1175 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢) |
36 | | breq1 4932 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (𝑣 <s 𝑢 ↔ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢)) |
37 | 36 | notbid 310 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (¬ 𝑣 <s 𝑢 ↔ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢)) |
38 | | reseq1 5689 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (𝑣 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺)) |
39 | 38 | eqeq2d 2788 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))) |
40 | 37, 39 | imbi12d 337 |
. . . . . . . . . . . . 13
⊢ (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 → (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺)))) |
41 | 40 | rspcv 3531 |
. . . . . . . . . . . 12
⊢ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 → (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺)))) |
42 | 32, 34, 35, 41 | syl3c 66 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → (𝑢 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺)) |
43 | | simprr2 1202 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
44 | 43 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
45 | | simpr3 1176 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝) |
46 | | breq1 4932 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (𝑣 <s 𝑝 ↔ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) |
47 | 46 | notbid 310 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → (¬ 𝑣 <s 𝑝 ↔ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) |
48 | 38 | eqeq2d 2788 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺))) |
49 | 47, 48 | imbi12d 337 |
. . . . . . . . . . . . 13
⊢ (𝑣 = if(𝑢 <s 𝑝, 𝑝, 𝑢) → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝 → (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺)))) |
50 | 49 | rspcv 3531 |
. . . . . . . . . . . 12
⊢ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝 → (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺)))) |
51 | 32, 44, 45, 50 | syl3c 66 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → (𝑝 ↾ suc 𝐺) = (if(𝑢 <s 𝑝, 𝑝, 𝑢) ↾ suc 𝐺)) |
52 | 42, 51 | eqtr4d 2817 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) ∧ (if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝)) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
53 | 52 | ex 405 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ((if(𝑢 <s 𝑝, 𝑝, 𝑢) ∈ 𝐴 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑢 ∧ ¬ if(𝑢 <s 𝑝, 𝑝, 𝑢) <s 𝑝) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))) |
54 | 4, 23, 31, 53 | mp3and 1443 |
. . . . . . . 8
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
55 | 54 | fveq1d 6501 |
. . . . . . 7
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = ((𝑝 ↾ suc 𝐺)‘𝐺)) |
56 | | simprl1 1198 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → 𝐺 ∈ dom 𝑢) |
57 | | sucidg 6107 |
. . . . . . . . . 10
⊢ (𝐺 ∈ dom 𝑢 → 𝐺 ∈ suc 𝐺) |
58 | 56, 57 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → 𝐺 ∈ suc 𝐺) |
59 | 58 | fvresd 6519 |
. . . . . . . 8
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = (𝑢‘𝐺)) |
60 | | simprl3 1200 |
. . . . . . . 8
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → (𝑢‘𝐺) = 𝑥) |
61 | 59, 60 | eqtrd 2814 |
. . . . . . 7
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = 𝑥) |
62 | 58 | fvresd 6519 |
. . . . . . . 8
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ((𝑝 ↾ suc 𝐺)‘𝐺) = (𝑝‘𝐺)) |
63 | | simprr3 1203 |
. . . . . . . 8
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → (𝑝‘𝐺) = 𝑦) |
64 | 62, 63 | eqtrd 2814 |
. . . . . . 7
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → ((𝑝 ↾ suc 𝐺)‘𝐺) = 𝑦) |
65 | 55, 61, 64 | 3eqtr3d 2822 |
. . . . . 6
⊢ (((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) → 𝑥 = 𝑦) |
66 | 65 | ex 405 |
. . . . 5
⊢ ((𝐴 ⊆
No ∧ (𝑢 ∈
𝐴 ∧ 𝑝 ∈ 𝐴)) → (((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
67 | 66 | rexlimdvva 3239 |
. . . 4
⊢ (𝐴 ⊆
No → (∃𝑢
∈ 𝐴 ∃𝑝 ∈ 𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
68 | 1, 67 | syl5bir 235 |
. . 3
⊢ (𝐴 ⊆
No → ((∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
69 | 68 | alrimivv 1887 |
. 2
⊢ (𝐴 ⊆
No → ∀𝑥∀𝑦((∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
70 | | eqeq2 2789 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑢‘𝐺) = 𝑥 ↔ (𝑢‘𝐺) = 𝑦)) |
71 | 70 | 3anbi3d 1421 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦))) |
72 | 71 | rexbidv 3242 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦))) |
73 | | dmeq 5622 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝) |
74 | 73 | eleq2d 2851 |
. . . . . 6
⊢ (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑝)) |
75 | | breq2 4933 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → (𝑣 <s 𝑢 ↔ 𝑣 <s 𝑝)) |
76 | 75 | notbid 310 |
. . . . . . . 8
⊢ (𝑢 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝)) |
77 | | reseq1 5689 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)) |
78 | 77 | eqeq1d 2780 |
. . . . . . . 8
⊢ (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))) |
79 | 76, 78 | imbi12d 337 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
80 | 79 | ralbidv 3147 |
. . . . . 6
⊢ (𝑢 = 𝑝 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) |
81 | | fveq1 6498 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → (𝑢‘𝐺) = (𝑝‘𝐺)) |
82 | 81 | eqeq1d 2780 |
. . . . . 6
⊢ (𝑢 = 𝑝 → ((𝑢‘𝐺) = 𝑦 ↔ (𝑝‘𝐺) = 𝑦)) |
83 | 74, 80, 82 | 3anbi123d 1415 |
. . . . 5
⊢ (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) |
84 | 83 | cbvrexv 3384 |
. . . 4
⊢
(∃𝑢 ∈
𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑦) ↔ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) |
85 | 72, 84 | syl6bb 279 |
. . 3
⊢ (𝑥 = 𝑦 → (∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦))) |
86 | 85 | mo4 2582 |
. 2
⊢
(∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ↔ ∀𝑥∀𝑦((∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥) ∧ ∃𝑝 ∈ 𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝‘𝐺) = 𝑦)) → 𝑥 = 𝑦)) |
87 | 69, 86 | sylibr 226 |
1
⊢ (𝐴 ⊆
No → ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) |