![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nulmoOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nulmo 2757 as of 26-Apr-2023. (Contributed by NM, 22-Dec-2007.) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nulmoOLD | ⊢ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1873 | . . 3 ⊢ Ⅎ𝑥⊥ | |
2 | 1 | axextmo 2756 | . 2 ⊢ ∃*𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) |
3 | nbfal 1522 | . . . . 5 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ ⊥)) | |
4 | 3 | bicomi 216 | . . . 4 ⊢ ((𝑦 ∈ 𝑥 ↔ ⊥) ↔ ¬ 𝑦 ∈ 𝑥) |
5 | 4 | albii 1782 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
6 | 5 | mobii 2559 | . 2 ⊢ (∃*𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) ↔ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
7 | 2, 6 | mpbi 222 | 1 ⊢ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∀wal 1505 ⊥wfal 1519 ∃*wmo 2545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |