Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk2lem2f1oOLDOLD Structured version   Visualization version   GIF version

Theorem numclwlk2lem2f1oOLDOLD 27762
 Description: Obsolete version of numclwlk2lem2f1o 27751 as of 1-May-2022. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Proof shortened by AV, 17-Mar-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
numclwwlkOLD.v 𝑉 = (Vtx‘𝐺)
numclwwlkOLD.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
numclwwlkOLD.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
numclwwlkOLDOLD.r 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
Assertion
Ref Expression
numclwlk2lem2f1oOLDOLD ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑥,𝐺,𝑤   𝑥,𝐻   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑋,𝑣
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑅(𝑥,𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwlk2lem2f1oOLDOLD
Dummy variables 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2862 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))))
2 fveq2 6412 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑅𝑦) = (𝑅𝑥))
3 oveq1 6886 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 substr ⟨0, (𝑁 + 1)⟩) = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
42, 3eqeq12d 2815 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩) ↔ (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
51, 4imbi12d 336 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩)) ↔ (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
65imbi2d 332 . . . . . . 7 (𝑦 = 𝑥 → (((𝑋𝑉𝑁 ∈ ℕ) → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩))) ↔ ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))))
7 numclwwlkOLD.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
8 numclwwlkOLD.q . . . . . . . 8 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
9 numclwwlkOLD.h . . . . . . . 8 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
10 numclwwlkOLDOLD.r . . . . . . . 8 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
117, 8, 9, 10numclwlk2lem2fvOLDOLD 27761 . . . . . . 7 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩)))
126, 11chvarv 2404 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
13123adant1 1161 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
1413imp 396 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
157, 8, 9, 10numclwlk2lem2fOLDOLD 27760 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
1615ffvelrnda 6586 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅𝑥) ∈ (𝑋𝑄𝑁))
1714, 16eqeltrrd 2880 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁))
1817ralrimiva 3148 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁))
197, 8, 9numclwwlk2lem1OLD 27759 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
2019imp 396 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)))
217, 8numclwwlkovq 27746 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
2221eleq2d 2865 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ 𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}))
23223adant1 1161 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ 𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}))
24 fveq1 6411 . . . . . . . . . 10 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
2524eqeq1d 2802 . . . . . . . . 9 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑋 ↔ (𝑢‘0) = 𝑋))
26 fveq2 6412 . . . . . . . . . 10 (𝑤 = 𝑢 → (lastS‘𝑤) = (lastS‘𝑢))
2726neeq1d 3031 . . . . . . . . 9 (𝑤 = 𝑢 → ((lastS‘𝑤) ≠ 𝑋 ↔ (lastS‘𝑢) ≠ 𝑋))
2825, 27anbi12d 625 . . . . . . . 8 (𝑤 = 𝑢 → (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋) ↔ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)))
2928elrab 3557 . . . . . . 7 (𝑢 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ↔ (𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)))
3023, 29syl6bb 279 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ (𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋))))
31 wwlknbp1 27094 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1)))
32 3simpc 1183 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1)) → (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1)))
3331, 32syl 17 . . . . . . . . . . . . . . 15 (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1)))
347wrdeqi 13556 . . . . . . . . . . . . . . . . 17 Word 𝑉 = Word (Vtx‘𝐺)
3534eleq2i 2871 . . . . . . . . . . . . . . . 16 (𝑢 ∈ Word 𝑉𝑢 ∈ Word (Vtx‘𝐺))
3635anbi1i 618 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ↔ (𝑢 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑢) = (𝑁 + 1)))
3733, 36sylibr 226 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)))
38 simpll 784 . . . . . . . . . . . . . . . 16 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → 𝑢 ∈ Word 𝑉)
39 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
40 2nn 11385 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℕ
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 2 ∈ ℕ)
4239, 41nnaddcld 11364 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ)
437, 8, 9numclwwlkovhOLD 27758 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
4442, 43sylan2 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
4544eleq2d 2865 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
46 fveq1 6411 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
4746eqeq1d 2802 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋))
48 fveq1 6411 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2)))
4948, 46neeq12d 3033 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))
5047, 49anbi12d 625 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
5150elrab 3557 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
5245, 51syl6bb 279 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
53523adant1 1161 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
5453adantl 474 . . . . . . . . . . . . . . . . . 18 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
557clwwlknbp 27341 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)))
56 lencl 13552 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ Word 𝑉 → (♯‘𝑢) ∈ ℕ0)
57 simprr 790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉)
58 df-2 11375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 = (1 + 1)
5958a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ → 2 = (1 + 1))
6059oveq2d 6895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 ∈ ℕ → (𝑁 + 2) = (𝑁 + (1 + 1)))
61 nncn 11322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
62 1cnd 10324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ → 1 ∈ ℂ)
6361, 62, 62addassd 10352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
6460, 63eqtr4d 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → (𝑁 + 2) = ((𝑁 + 1) + 1))
6564adantl 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 + 2) = ((𝑁 + 1) + 1))
6665eqeq2d 2810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → ((♯‘𝑥) = (𝑁 + 2) ↔ (♯‘𝑥) = ((𝑁 + 1) + 1)))
6766biimpcd 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((♯‘𝑥) = (𝑁 + 2) → ((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (♯‘𝑥) = ((𝑁 + 1) + 1)))
6867adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (♯‘𝑥) = ((𝑁 + 1) + 1)))
6968impcom 397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (♯‘𝑥) = ((𝑁 + 1) + 1))
70 oveq1 6886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑢) = (𝑁 + 1) → ((♯‘𝑢) + 1) = ((𝑁 + 1) + 1))
7170ad3antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((♯‘𝑢) + 1) = ((𝑁 + 1) + 1))
7269, 71eqtr4d 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (♯‘𝑥) = ((♯‘𝑢) + 1))
7357, 72jca 508 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))
7473exp31 411 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑢) ∈ ℕ0 ∧ (♯‘𝑢) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
7556, 74sylan 576 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
7675com12 32 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
77763ad2ant3 1166 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
7877impcom 397 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
7978com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8079ancoms 451 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8155, 80syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8281adantr 473 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8382com12 32 . . . . . . . . . . . . . . . . . 18 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8454, 83sylbid 232 . . . . . . . . . . . . . . . . 17 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8584ralrimiv 3147 . . . . . . . . . . . . . . . 16 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))
8638, 85jca 508 . . . . . . . . . . . . . . 15 (((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
8786ex 402 . . . . . . . . . . . . . 14 ((𝑢 ∈ Word 𝑉 ∧ (♯‘𝑢) = (𝑁 + 1)) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
8837, 87syl 17 . . . . . . . . . . . . 13 (𝑢 ∈ (𝑁 WWalksN 𝐺) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
8988adantr 473 . . . . . . . . . . . 12 ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1)))))
9089imp 396 . . . . . . . . . . 11 (((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))))
91 nfcv 2942 . . . . . . . . . . . . 13 𝑣𝑋
92 nfmpt21 6957 . . . . . . . . . . . . . 14 𝑣(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
939, 92nfcxfr 2940 . . . . . . . . . . . . 13 𝑣𝐻
94 nfcv 2942 . . . . . . . . . . . . 13 𝑣(𝑁 + 2)
9591, 93, 94nfov 6909 . . . . . . . . . . . 12 𝑣(𝑋𝐻(𝑁 + 2))
9695reuccats1OLD 13781 . . . . . . . . . . 11 ((𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑢) + 1))) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (♯‘𝑢)⟩)))
9790, 96syl 17 . . . . . . . . . 10 (((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (♯‘𝑢)⟩)))
9897imp 396 . . . . . . . . 9 ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (♯‘𝑢)⟩))
9931simp3d 1175 . . . . . . . . . . . . . . 15 (𝑢 ∈ (𝑁 WWalksN 𝐺) → (♯‘𝑢) = (𝑁 + 1))
10099eqcomd 2806 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝑁 WWalksN 𝐺) → (𝑁 + 1) = (♯‘𝑢))
101100ad4antr 725 . . . . . . . . . . . . 13 (((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑁 + 1) = (♯‘𝑢))
102101opeq2d 4601 . . . . . . . . . . . 12 (((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ⟨0, (𝑁 + 1)⟩ = ⟨0, (♯‘𝑢)⟩)
103102oveq2d 6895 . . . . . . . . . . 11 (((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) = (𝑥 substr ⟨0, (♯‘𝑢)⟩))
104103eqeq2d 2810 . . . . . . . . . 10 (((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) ↔ 𝑢 = (𝑥 substr ⟨0, (♯‘𝑢)⟩)))
105104reubidva 3308 . . . . . . . . 9 ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) → (∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) ↔ ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (♯‘𝑢)⟩)))
10698, 105mpbird 249 . . . . . . . 8 ((((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
107106exp31 411 . . . . . . 7 ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
108107com12 32 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑢 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ (lastS‘𝑢) ≠ 𝑋)) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
10930, 108sylbid 232 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
110109imp 396 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
11120, 110mpd 15 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
112111ralrimiva 3148 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ∀𝑢 ∈ (𝑋𝑄𝑁)∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
11310f1ompt 6608 . 2 (𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁) ↔ (∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ∧ ∀𝑢 ∈ (𝑋𝑄𝑁)∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
11418, 112, 113sylanbrc 579 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 385   ∧ w3a 1108   = wceq 1653   ∈ wcel 2157   ≠ wne 2972  ∀wral 3090  ∃!wreu 3092  {crab 3094  ⟨cop 4375   ↦ cmpt 4923  –1-1-onto→wf1o 6101  ‘cfv 6102  (class class class)co 6879   ↦ cmpt2 6881  0cc0 10225  1c1 10226   + caddc 10228   − cmin 10557  ℕcn 11313  2c2 11367  ℕ0cn0 11579  ♯chash 13369  Word cword 13533  lastSclsw 13581   ++ cconcat 13589  ⟨“cs1 13614   substr csubstr 13663  Vtxcvtx 26230   WWalksN cwwlksn 27076   ClWWalksN cclwwlkn 27325   FriendGraph cfrgr 27604 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-oadd 7804  df-er 7983  df-map 8098  df-pm 8099  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-card 9052  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-nn 11314  df-2 11375  df-n0 11580  df-xnn0 11652  df-z 11666  df-uz 11930  df-rp 12074  df-fz 12580  df-fzo 12720  df-hash 13370  df-word 13534  df-lsw 13582  df-concat 13590  df-s1 13615  df-substr 13664  df-wwlks 27080  df-wwlksn 27081  df-clwwlk 27274  df-clwwlkn 27327  df-frgr 27605 This theorem is referenced by:  numclwwlk2lem3OLDOLD  27763
 Copyright terms: Public domain W3C validator