![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwlk2lem2fvOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete version of numclwlk2lem2fv 27780 as of 1-May-2022. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
numclwwlkOLD.v | ⊢ 𝑉 = (Vtx‘𝐺) |
numclwwlkOLD.q | ⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) |
numclwwlkOLD.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))}) |
numclwwlkOLDOLD.r | ⊢ 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr 〈0, (𝑁 + 1)〉)) |
Ref | Expression |
---|---|
numclwlk2lem2fvOLDOLD | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑊) = (𝑊 substr 〈0, (𝑁 + 1)〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlkOLDOLD.r | . . . 4 ⊢ 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr 〈0, (𝑁 + 1)〉)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr 〈0, (𝑁 + 1)〉))) |
3 | oveq1 6911 | . . . 4 ⊢ (𝑥 = 𝑊 → (𝑥 substr 〈0, (𝑁 + 1)〉) = (𝑊 substr 〈0, (𝑁 + 1)〉)) | |
4 | 3 | adantl 475 | . . 3 ⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 = 𝑊) → (𝑥 substr 〈0, (𝑁 + 1)〉) = (𝑊 substr 〈0, (𝑁 + 1)〉)) |
5 | simpr 479 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) | |
6 | ovexd 6938 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈ V) | |
7 | 2, 4, 5, 6 | fvmptd 6534 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) ∧ 𝑊 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅‘𝑊) = (𝑊 substr 〈0, (𝑁 + 1)〉)) |
8 | 7 | ex 403 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅‘𝑊) = (𝑊 substr 〈0, (𝑁 + 1)〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2998 {crab 3120 Vcvv 3413 〈cop 4402 ↦ cmpt 4951 ‘cfv 6122 (class class class)co 6904 ↦ cmpt2 6906 0cc0 10251 1c1 10252 + caddc 10254 − cmin 10584 ℕcn 11349 2c2 11405 lastSclsw 13621 substr csubstr 13699 Vtxcvtx 26293 WWalksN cwwlksn 27124 ClWWalksN cclwwlkn 27361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-iota 6085 df-fun 6124 df-fv 6130 df-ov 6907 |
This theorem is referenced by: numclwlk2lem2f1oOLDOLD 27792 |
Copyright terms: Public domain | W3C validator |