![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2OLDOLD | Structured version Visualization version GIF version |
Description: Obsolete version of numclwwlk1lem2 27781 as of 31-Jul-2022. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 6-Mar-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
Ref | Expression |
---|---|
numclwwlk1lem2OLDOLD | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6954 | . . 3 ⊢ (𝑋𝐶𝑁) ∈ V | |
2 | nfcv 2934 | . . . . 5 ⊢ Ⅎ𝑤𝑋 | |
3 | extwwlkfab.c | . . . . . 6 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
4 | nfcv 2934 | . . . . . . 7 ⊢ Ⅎ𝑤𝑉 | |
5 | nfcv 2934 | . . . . . . 7 ⊢ Ⅎ𝑤(ℤ≥‘2) | |
6 | nfrab1 3309 | . . . . . . 7 ⊢ Ⅎ𝑤{𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣} | |
7 | 4, 5, 6 | nfmpt2 7001 | . . . . . 6 ⊢ Ⅎ𝑤(𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
8 | 3, 7 | nfcxfr 2932 | . . . . 5 ⊢ Ⅎ𝑤𝐶 |
9 | nfcv 2934 | . . . . 5 ⊢ Ⅎ𝑤𝑁 | |
10 | 2, 8, 9 | nfov 6952 | . . . 4 ⊢ Ⅎ𝑤(𝑋𝐶𝑁) |
11 | 10 | mptexgf 6757 | . . 3 ⊢ ((𝑋𝐶𝑁) ∈ V → (𝑤 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑤 substr 〈0, (𝑁 − 2)〉), (𝑤‘(𝑁 − 1))〉) ∈ V) |
12 | 1, 11 | ax-mp 5 | . 2 ⊢ (𝑤 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑤 substr 〈0, (𝑁 − 2)〉), (𝑤‘(𝑁 − 1))〉) ∈ V |
13 | extwwlkfab.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
14 | extwwlkfab.f | . . 3 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
15 | nfcv 2934 | . . . 4 ⊢ Ⅎ𝑢(𝑋𝐶𝑁) | |
16 | nfcv 2934 | . . . 4 ⊢ Ⅎ𝑢〈(𝑤 substr 〈0, (𝑁 − 2)〉), (𝑤‘(𝑁 − 1))〉 | |
17 | nfcv 2934 | . . . 4 ⊢ Ⅎ𝑤〈(𝑢 substr 〈0, (𝑁 − 2)〉), (𝑢‘(𝑁 − 1))〉 | |
18 | oveq1 6929 | . . . . 5 ⊢ (𝑤 = 𝑢 → (𝑤 substr 〈0, (𝑁 − 2)〉) = (𝑢 substr 〈0, (𝑁 − 2)〉)) | |
19 | fveq1 6445 | . . . . 5 ⊢ (𝑤 = 𝑢 → (𝑤‘(𝑁 − 1)) = (𝑢‘(𝑁 − 1))) | |
20 | 18, 19 | opeq12d 4644 | . . . 4 ⊢ (𝑤 = 𝑢 → 〈(𝑤 substr 〈0, (𝑁 − 2)〉), (𝑤‘(𝑁 − 1))〉 = 〈(𝑢 substr 〈0, (𝑁 − 2)〉), (𝑢‘(𝑁 − 1))〉) |
21 | 10, 15, 16, 17, 20 | cbvmptf 4983 | . . 3 ⊢ (𝑤 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑤 substr 〈0, (𝑁 − 2)〉), (𝑤‘(𝑁 − 1))〉) = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 substr 〈0, (𝑁 − 2)〉), (𝑢‘(𝑁 − 1))〉) |
22 | 13, 3, 14, 21 | numclwwlk1lem2f1oOLD 27780 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑤 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑤 substr 〈0, (𝑁 − 2)〉), (𝑤‘(𝑁 − 1))〉):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋))) |
23 | f1oeq1 6380 | . . 3 ⊢ (𝑓 = (𝑤 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑤 substr 〈0, (𝑁 − 2)〉), (𝑤‘(𝑁 − 1))〉) → (𝑓:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ (𝑤 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑤 substr 〈0, (𝑁 − 2)〉), (𝑤‘(𝑁 − 1))〉):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)))) | |
24 | 23 | spcegv 3496 | . 2 ⊢ ((𝑤 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑤 substr 〈0, (𝑁 − 2)〉), (𝑤‘(𝑁 − 1))〉) ∈ V → ((𝑤 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑤 substr 〈0, (𝑁 − 2)〉), (𝑤‘(𝑁 − 1))〉):(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋)))) |
25 | 12, 22, 24 | mpsyl 68 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→(𝐹 × (𝐺 NeighbVtx 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1601 ∃wex 1823 ∈ wcel 2107 {crab 3094 Vcvv 3398 〈cop 4404 ↦ cmpt 4965 × cxp 5353 –1-1-onto→wf1o 6134 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 0cc0 10272 1c1 10273 − cmin 10606 2c2 11430 3c3 11431 ℤ≥cuz 11992 substr csubstr 13730 Vtxcvtx 26344 USGraphcusgr 26498 NeighbVtx cnbgr 26679 ClWWalksNOncclwwlknon 27489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-xnn0 11715 df-z 11729 df-uz 11993 df-rp 12138 df-fz 12644 df-fzo 12785 df-hash 13436 df-word 13600 df-lsw 13653 df-concat 13661 df-s1 13686 df-substr 13731 df-pfx 13780 df-s2 13999 df-edg 26396 df-upgr 26430 df-umgr 26431 df-usgr 26500 df-nbgr 26680 df-wwlks 27179 df-wwlksn 27180 df-clwwlk 27362 df-clwwlkn 27414 df-clwwlknon 27490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |