MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk3lemOLD Structured version   Visualization version   GIF version

Theorem numclwwlk3lemOLD 27580
Description: Obsolete version of numclwwlk3lem2 27583 as of 1-May-2022. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 1-Jun-2021.) (Revised by AV, 6-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
numclwwlkOLD.v 𝑉 = (Vtx‘𝐺)
numclwwlkOLD.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
numclwwlkOLD.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
numclwwlkOLD.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
Assertion
Ref Expression
numclwwlk3lemOLD (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑄(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)

Proof of Theorem numclwwlk3lemOLD
StepHypRef Expression
1 clwwlknon 27262 . . . . 5 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
21a1i 11 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
32fveq2d 6336 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}))
4 pm4.42 1041 . . . . . . . 8 ((𝑤‘0) = 𝑋 ↔ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))))
5 nne 2947 . . . . . . . . . 10 (¬ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0) ↔ (𝑤‘(𝑁 − 2)) = (𝑤‘0))
65anbi2i 601 . . . . . . . . 9 (((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ↔ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))
76orbi2i 886 . . . . . . . 8 ((((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) ↔ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))))
84, 7bitri 264 . . . . . . 7 ((𝑤‘0) = 𝑋 ↔ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))))
98a1i 11 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑤‘0) = 𝑋 ↔ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))))
109rabbidv 3339 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))})
11 unrab 4046 . . . . 5 ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∪ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))}
1210, 11syl6eqr 2823 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∪ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}))
1312fveq2d 6336 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (♯‘({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∪ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})))
14 numclwwlkOLD.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1514fusgrvtxfi 26434 . . . . . . . 8 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
1615ad2antrr 697 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑉 ∈ Fin)
1714, 16syl5eqelr 2855 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (Vtx‘𝐺) ∈ Fin)
18 clwwlknfi 27201 . . . . . 6 ((Vtx‘𝐺) ∈ Fin → (𝑁 ClWWalksN 𝐺) ∈ Fin)
1917, 18syl 17 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ClWWalksN 𝐺) ∈ Fin)
20 rabfi 8341 . . . . 5 ((𝑁 ClWWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∈ Fin)
2119, 20syl 17 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∈ Fin)
22 rabfi 8341 . . . . 5 ((𝑁 ClWWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))} ∈ Fin)
2319, 22syl 17 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))} ∈ Fin)
24 inrab 4047 . . . . 5 ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))}
25 neneq 2949 . . . . . . . . . . . 12 ((𝑤‘(𝑁 − 2)) ≠ (𝑤‘0) → ¬ (𝑤‘(𝑁 − 2)) = (𝑤‘0))
2625adantl 467 . . . . . . . . . . 11 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → ¬ (𝑤‘(𝑁 − 2)) = (𝑤‘0))
2726intnand 999 . . . . . . . . . 10 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))
2827imori 833 . . . . . . . . 9 (¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))
29 ianor 940 . . . . . . . . 9 (¬ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) ↔ (¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))))
3028, 29mpbir 221 . . . . . . . 8 ¬ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))
3130a1i 11 . . . . . . 7 ((((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ¬ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))))
3231ralrimiva 3115 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))))
33 rabeq0 4103 . . . . . 6 ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))} = ∅ ↔ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))))
3432, 33sylibr 224 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))} = ∅)
3524, 34syl5eq 2817 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}) = ∅)
36 hashun 13373 . . . 4 (({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∈ Fin ∧ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))} ∈ Fin ∧ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}) = ∅) → (♯‘({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∪ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})) = ((♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) + (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})))
3721, 23, 35, 36syl3anc 1476 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∪ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})) = ((♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) + (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})))
383, 13, 373eqtrd 2809 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) + (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})))
39 simpr 471 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) → 𝑋𝑉)
40 eluz2nn 11928 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
41 numclwwlkOLD.q . . . . . 6 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
42 numclwwlkOLD.h . . . . . 6 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
4314, 41, 42numclwwlkovhOLD 27573 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))})
4439, 40, 43syl2an 575 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))})
4544fveq2d 6336 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋𝐻𝑁)) = (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}))
46 numclwwlkOLD.c . . . . . 6 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
4746numclwwlkovgOLD 27535 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})
4847adantll 685 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})
4948fveq2d 6336 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋𝐶𝑁)) = (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}))
5045, 49oveq12d 6811 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))) = ((♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) + (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})))
5138, 50eqtr4d 2808 1 (((𝐺 ∈ FinUSGraph ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 826   = wceq 1631  wcel 2145  wne 2943  wral 3061  {crab 3065  cun 3721  cin 3722  c0 4063  cfv 6031  (class class class)co 6793  cmpt2 6795  Fincfn 8109  0cc0 10138   + caddc 10141  cmin 10468  cn 11222  2c2 11272  cuz 11888  chash 13321  lastSclsw 13488  Vtxcvtx 26095  FinUSGraphcfusgr 26431   WWalksN cwwlksn 26954   ClWWalksN cclwwlkn 27174  ClWWalksNOncclwwlknon 27259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-word 13495  df-fusgr 26432  df-clwwlk 27132  df-clwwlkn 27176  df-clwwlknon 27260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator