Proof of Theorem numclwwlk3lemOLD
Step | Hyp | Ref
| Expression |
1 | | clwwlknon 27262 |
. . . . 5
⊢ (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
2 | 1 | a1i 11 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
3 | 2 | fveq2d 6336 |
. . 3
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})) |
4 | | pm4.42 1041 |
. . . . . . . 8
⊢ ((𝑤‘0) = 𝑋 ↔ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))) |
5 | | nne 2947 |
. . . . . . . . . 10
⊢ (¬
(𝑤‘(𝑁 − 2)) ≠ (𝑤‘0) ↔ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) |
6 | 5 | anbi2i 601 |
. . . . . . . . 9
⊢ (((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ↔ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) |
7 | 6 | orbi2i 886 |
. . . . . . . 8
⊢ ((((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) ↔ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))) |
8 | 4, 7 | bitri 264 |
. . . . . . 7
⊢ ((𝑤‘0) = 𝑋 ↔ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))) |
9 | 8 | a1i 11 |
. . . . . 6
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((𝑤‘0) = 𝑋 ↔ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))))) |
10 | 9 | rabbidv 3339 |
. . . . 5
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))}) |
11 | | unrab 4046 |
. . . . 5
⊢ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∪ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))} |
12 | 10, 11 | syl6eqr 2823 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∪ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})) |
13 | 12 | fveq2d 6336 |
. . 3
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘{𝑤
∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (♯‘({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∪ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}))) |
14 | | numclwwlkOLD.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
15 | 14 | fusgrvtxfi 26434 |
. . . . . . . 8
⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
16 | 15 | ad2antrr 697 |
. . . . . . 7
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ 𝑉 ∈
Fin) |
17 | 14, 16 | syl5eqelr 2855 |
. . . . . 6
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (Vtx‘𝐺) ∈
Fin) |
18 | | clwwlknfi 27201 |
. . . . . 6
⊢
((Vtx‘𝐺)
∈ Fin → (𝑁
ClWWalksN 𝐺) ∈
Fin) |
19 | 17, 18 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑁 ClWWalksN 𝐺) ∈ Fin) |
20 | | rabfi 8341 |
. . . . 5
⊢ ((𝑁 ClWWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∈ Fin) |
21 | 19, 20 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∈ Fin) |
22 | | rabfi 8341 |
. . . . 5
⊢ ((𝑁 ClWWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))} ∈ Fin) |
23 | 19, 22 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))} ∈ Fin) |
24 | | inrab 4047 |
. . . . 5
⊢ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))} |
25 | | neneq 2949 |
. . . . . . . . . . . 12
⊢ ((𝑤‘(𝑁 − 2)) ≠ (𝑤‘0) → ¬ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) |
26 | 25 | adantl 467 |
. . . . . . . . . . 11
⊢ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → ¬ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) |
27 | 26 | intnand 999 |
. . . . . . . . . 10
⊢ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) |
28 | 27 | imori 833 |
. . . . . . . . 9
⊢ (¬
((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) |
29 | | ianor 940 |
. . . . . . . . 9
⊢ (¬
(((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) ↔ (¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∨ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))) |
30 | 28, 29 | mpbir 221 |
. . . . . . . 8
⊢ ¬
(((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) |
31 | 30 | a1i 11 |
. . . . . . 7
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ¬ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))) |
32 | 31 | ralrimiva 3115 |
. . . . . 6
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ ∀𝑤 ∈
(𝑁 ClWWalksN 𝐺) ¬ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))) |
33 | | rabeq0 4103 |
. . . . . 6
⊢ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))} = ∅ ↔ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))) |
34 | 32, 33 | sylibr 224 |
. . . . 5
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))} = ∅) |
35 | 24, 34 | syl5eq 2817 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}) = ∅) |
36 | | hashun 13373 |
. . . 4
⊢ (({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∈ Fin ∧ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))} ∈ Fin ∧ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}) = ∅) →
(♯‘({𝑤 ∈
(𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∪ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})) = ((♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) + (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}))) |
37 | 21, 23, 35, 36 | syl3anc 1476 |
. . 3
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘({𝑤
∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} ∪ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})) = ((♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) + (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}))) |
38 | 3, 13, 37 | 3eqtrd 2809 |
. 2
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) + (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}))) |
39 | | simpr 471 |
. . . . 5
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
40 | | eluz2nn 11928 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℕ) |
41 | | numclwwlkOLD.q |
. . . . . 6
⊢ 𝑄 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)}) |
42 | | numclwwlkOLD.h |
. . . . . 6
⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))}) |
43 | 14, 41, 42 | numclwwlkovhOLD 27573 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) |
44 | 39, 40, 43 | syl2an 575 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) |
45 | 44 | fveq2d 6336 |
. . 3
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(𝑋𝐻𝑁)) = (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))})) |
46 | | numclwwlkOLD.c |
. . . . . 6
⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2)
↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))}) |
47 | 46 | numclwwlkovgOLD 27535 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}) |
48 | 47 | adantll 685 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}) |
49 | 48 | fveq2d 6336 |
. . 3
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(𝑋𝐶𝑁)) = (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})) |
50 | 45, 49 | oveq12d 6811 |
. 2
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁))) = ((♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) + (♯‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}))) |
51 | 38, 50 | eqtr4d 2808 |
1
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ∈ (ℤ≥‘2))
→ (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑁)) = ((♯‘(𝑋𝐻𝑁)) + (♯‘(𝑋𝐶𝑁)))) |