![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpinvOLD | Structured version Visualization version GIF version |
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 30-Jan-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ogrpsub.0 | ⊢ 𝐵 = (Base‘𝐺) |
ogrpsub.1 | ⊢ ≤ = (le‘𝐺) |
ogrpinv.2 | ⊢ 𝐼 = (invg‘𝐺) |
ogrpinv.3 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
ogrpinvOLD | ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) → (𝐼‘𝑋) ≤ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isogrp 30246 | . . . . 5 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
2 | 1 | simprbi 492 | . . . 4 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ oMnd) |
3 | 2 | 3ad2ant1 1169 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) → 𝐺 ∈ oMnd) |
4 | 1 | simplbi 493 | . . . . 5 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
5 | 4 | 3ad2ant1 1169 | . . . 4 ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) → 𝐺 ∈ Grp) |
6 | ogrpsub.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
7 | ogrpinv.3 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
8 | 6, 7 | grpidcl 17803 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
9 | 5, 8 | syl 17 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) → 0 ∈ 𝐵) |
10 | simp2 1173 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) → 𝑋 ∈ 𝐵) | |
11 | ogrpinv.2 | . . . . 5 ⊢ 𝐼 = (invg‘𝐺) | |
12 | 6, 11 | grpinvcl 17820 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) |
13 | 5, 10, 12 | syl2anc 581 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) → (𝐼‘𝑋) ∈ 𝐵) |
14 | simp3 1174 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) → 0 ≤ 𝑋) | |
15 | ogrpsub.1 | . . . 4 ⊢ ≤ = (le‘𝐺) | |
16 | eqid 2824 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
17 | 6, 15, 16 | omndadd 30250 | . . 3 ⊢ ((𝐺 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝐼‘𝑋) ∈ 𝐵) ∧ 0 ≤ 𝑋) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) ≤ (𝑋(+g‘𝐺)(𝐼‘𝑋))) |
18 | 3, 9, 10, 13, 14, 17 | syl131anc 1508 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) ≤ (𝑋(+g‘𝐺)(𝐼‘𝑋))) |
19 | 6, 16, 7 | grplid 17805 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐼‘𝑋) ∈ 𝐵) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
20 | 5, 13, 19 | syl2anc 581 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
21 | 6, 16, 7, 11 | grprinv 17822 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = 0 ) |
22 | 5, 10, 21 | syl2anc 581 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = 0 ) |
23 | 18, 20, 22 | 3brtr3d 4903 | 1 ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) → (𝐼‘𝑋) ≤ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 class class class wbr 4872 ‘cfv 6122 (class class class)co 6904 Basecbs 16221 +gcplusg 16304 lecple 16311 0gc0g 16452 Grpcgrp 17775 invgcminusg 17776 oMndcomnd 30241 oGrpcogrp 30242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-0g 16454 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-grp 17778 df-minusg 17779 df-omnd 30243 df-ogrp 30244 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |