MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onacda Structured version   Visualization version   GIF version

Theorem onacda 9219
Description: The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
onacda ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) ≈ (𝐴 +𝑐 𝐵))

Proof of Theorem onacda
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enrefg 8139 . . . . 5 (𝐴 ∈ On → 𝐴𝐴)
21adantr 466 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴𝐴)
3 simpr 471 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
4 eqid 2771 . . . . . . . 8 (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) = (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))
54oacomf1olem 7796 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅))
65ancoms 446 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅))
76simpld 482 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))
8 f1oeng 8126 . . . . 5 ((𝐵 ∈ On ∧ (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) → 𝐵 ≈ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))
93, 7, 8syl2anc 573 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ≈ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))
10 incom 3956 . . . . 5 (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) = (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴)
116simprd 483 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅)
1210, 11syl5eq 2817 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) = ∅)
13 cdaenun 9196 . . . 4 ((𝐴𝐴𝐵 ≈ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∧ (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) = ∅) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))))
142, 9, 12, 13syl3anc 1476 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))))
15 oarec 7794 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))))
1614, 15breqtrrd 4814 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑐 𝐵) ≈ (𝐴 +𝑜 𝐵))
1716ensymd 8158 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) ≈ (𝐴 +𝑐 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cun 3721  cin 3722  c0 4063   class class class wbr 4786  cmpt 4863  ran crn 5250  Oncon0 5864  1-1-ontowf1o 6028  (class class class)co 6791   +𝑜 coa 7708  cen 8104   +𝑐 ccda 9189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-en 8108  df-cda 9190
This theorem is referenced by:  cardacda  9220  nnacda  9223
  Copyright terms: Public domain W3C validator