![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onacda | Structured version Visualization version GIF version |
Description: The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
onacda | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) ≈ (𝐴 +𝑐 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 8139 | . . . . 5 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
2 | 1 | adantr 466 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ≈ 𝐴) |
3 | simpr 471 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On) | |
4 | eqid 2771 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) | |
5 | 4 | oacomf1olem 7796 | . . . . . . 7 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) ∧ (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅)) |
6 | 5 | ancoms 446 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) ∧ (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅)) |
7 | 6 | simpld 482 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥))) |
8 | f1oeng 8126 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥))) → 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥))) | |
9 | 3, 7, 8 | syl2anc 573 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥))) |
10 | incom 3956 | . . . . 5 ⊢ (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥))) = (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) | |
11 | 6 | simprd 483 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅) |
12 | 10, 11 | syl5eq 2817 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥))) = ∅) |
13 | cdaenun 9196 | . . . 4 ⊢ ((𝐴 ≈ 𝐴 ∧ 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)) ∧ (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥))) = ∅) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)))) | |
14 | 2, 9, 12, 13 | syl3anc 1476 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)))) |
15 | oarec 7794 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +𝑜 𝑥)))) | |
16 | 14, 15 | breqtrrd 4814 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑐 𝐵) ≈ (𝐴 +𝑜 𝐵)) |
17 | 16 | ensymd 8158 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) ≈ (𝐴 +𝑐 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∪ cun 3721 ∩ cin 3722 ∅c0 4063 class class class wbr 4786 ↦ cmpt 4863 ran crn 5250 Oncon0 5864 –1-1-onto→wf1o 6028 (class class class)co 6791 +𝑜 coa 7708 ≈ cen 8104 +𝑐 ccda 9189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-oadd 7715 df-er 7894 df-en 8108 df-cda 9190 |
This theorem is referenced by: cardacda 9220 nnacda 9223 |
Copyright terms: Public domain | W3C validator |