![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opthregOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of opthreg 8810 as of 15-Jun-2022. Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg 8786 (via the preleqOLD 8811 step). See df-op 4405 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
opthreg.1 | ⊢ 𝐴 ∈ V |
opthreg.2 | ⊢ 𝐵 ∈ V |
opthreg.3 | ⊢ 𝐶 ∈ V |
opthreg.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
opthregOLD | ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthreg.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 1 | prid1 4529 | . . . 4 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | opthreg.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
4 | 3 | prid1 4529 | . . . 4 ⊢ 𝐶 ∈ {𝐶, 𝐷} |
5 | prex 5141 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ V | |
6 | prex 5141 | . . . . 5 ⊢ {𝐶, 𝐷} ∈ V | |
7 | 1, 5, 3, 6 | preleqOLD 8811 | . . . 4 ⊢ (((𝐴 ∈ {𝐴, 𝐵} ∧ 𝐶 ∈ {𝐶, 𝐷}) ∧ {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷})) |
8 | 2, 4, 7 | mpanl12 692 | . . 3 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷})) |
9 | preq1 4500 | . . . . . 6 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
10 | 9 | eqeq1d 2780 | . . . . 5 ⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) |
11 | opthreg.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
12 | opthreg.4 | . . . . . 6 ⊢ 𝐷 ∈ V | |
13 | 11, 12 | preqr2 4609 | . . . . 5 ⊢ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷) |
14 | 10, 13 | syl6bi 245 | . . . 4 ⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) |
15 | 14 | imdistani 564 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
16 | 8, 15 | syl 17 | . 2 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
17 | preq1 4500 | . . . 4 ⊢ (𝐴 = 𝐶 → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}}) | |
18 | 17 | adantr 474 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}}) |
19 | preq12 4502 | . . . 4 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) | |
20 | 19 | preq2d 4507 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐶, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) |
21 | 18, 20 | eqtrd 2814 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) |
22 | 16, 21 | impbii 201 | 1 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 {cpr 4400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-reg 8786 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4887 df-opab 4949 df-eprel 5266 df-fr 5314 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |