MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt2g Structured version   Visualization version   GIF version

Theorem ovmpt2g 7060
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovmpt2g.1 (𝑥 = 𝐴𝑅 = 𝐺)
ovmpt2g.2 (𝑦 = 𝐵𝐺 = 𝑆)
ovmpt2g.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpt2g ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpt2g
StepHypRef Expression
1 ovmpt2g.1 . . 3 (𝑥 = 𝐴𝑅 = 𝐺)
2 ovmpt2g.2 . . 3 (𝑦 = 𝐵𝐺 = 𝑆)
31, 2sylan9eq 2881 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
4 ovmpt2g.3 . 2 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
53, 4ovmpt2ga 7055 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1111   = wceq 1656  wcel 2164  (class class class)co 6910  cmpt2 6912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915
This theorem is referenced by:  ovmpt2  7061  mapvalg  8137  pmvalg  8138  cdaval  9314  genpv  10143  shftfval  14194  symgov  18167  frlmipval  20492  bcthlem1  23499  motplusg  25861  signspval  31172  elghomlem1OLD  34221  paddval  35868  tgrpov  36818  erngmul  36876  erngmul-rN  36884  dvamulr  37082  dvavadd  37085  dvhmulr  37156  djavalN  37205  djhval  37468  mendmulr  38596
  Copyright terms: Public domain W3C validator