![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpt2g | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpt2g.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
ovmpt2g.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
ovmpt2g.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
Ref | Expression |
---|---|
ovmpt2g | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpt2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
2 | ovmpt2g.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
3 | 1, 2 | sylan9eq 2881 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
4 | ovmpt2g.3 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
5 | 3, 4 | ovmpt2ga 7055 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 (class class class)co 6910 ↦ cmpt2 6912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 |
This theorem is referenced by: ovmpt2 7061 mapvalg 8137 pmvalg 8138 cdaval 9314 genpv 10143 shftfval 14194 symgov 18167 frlmipval 20492 bcthlem1 23499 motplusg 25861 signspval 31172 elghomlem1OLD 34221 paddval 35868 tgrpov 36818 erngmul 36876 erngmul-rN 36884 dvamulr 37082 dvavadd 37085 dvhmulr 37156 djavalN 37205 djhval 37468 mendmulr 38596 |
Copyright terms: Public domain | W3C validator |