MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt2ga Structured version   Visualization version   GIF version

Theorem ovmpt2ga 7020
Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovmpt2ga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpt2ga.2 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpt2ga ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpt2ga
StepHypRef Expression
1 elex 3406 . 2 (𝑆𝐻𝑆 ∈ V)
2 ovmpt2ga.2 . . . 4 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
32a1i 11 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
4 ovmpt2ga.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
54adantl 469 . . 3 (((𝐴𝐶𝐵𝐷𝑆 ∈ V) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
6 simp1 1159 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐴𝐶)
7 simp2 1160 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐵𝐷)
8 simp3 1161 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝑆 ∈ V)
93, 5, 6, 7, 8ovmpt2d 7018 . 2 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆)
101, 9syl3an3 1198 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2156  Vcvv 3391  (class class class)co 6874  cmpt2 6876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pr 5096
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-iota 6064  df-fun 6103  df-fv 6109  df-ov 6877  df-oprab 6878  df-mpt2 6879
This theorem is referenced by:  ovmpt2a  7021  ovmpt2g  7025  elovmpt2  7109  offval  7134  offval3  7392  mptmpt2opabbrd  7481  bropopvvv  7489  reps  13741  hashbcval  15923  setsvalg  16098  ressval  16138  restval  16292  sylow1lem4  18217  sylow3lem2  18244  sylow3lem3  18245  lsmvalx  18255  mvrfval  19629  opsrval  19683  marrepfval  20577  marrepval0  20578  marepvfval  20582  marepvval0  20583  cnmpt12  21684  cnmpt22  21691  qtopval  21712  flimval  21980  fclsval  22025  ucnval  22294  stdbdmetval  22532  resvval  30152  ofcfval3  30489  fmulcl  40293
  Copyright terms: Public domain W3C validator