Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpt2x2 Structured version   Visualization version   GIF version

Theorem ovmpt2x2 42966
Description: The value of an operation class abstraction. Variant of ovmpt2ga 7050 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
ovmpt2x2.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpt2x2.2 (𝑦 = 𝐵𝐶 = 𝐿)
ovmpt2x2.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpt2x2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝑥,𝐿,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem ovmpt2x2
StepHypRef Expression
1 ovmpt2x2.3 . . 3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
21a1i 11 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
3 ovmpt2x2.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
43adantl 475 . 2 (((𝐴𝐿𝐵𝐷𝑆𝐻) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
5 ovmpt2x2.2 . . 3 (𝑦 = 𝐵𝐶 = 𝐿)
65adantl 475 . 2 (((𝐴𝐿𝐵𝐷𝑆𝐻) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿)
7 simp1 1172 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐴𝐿)
8 simp2 1173 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐵𝐷)
9 simp3 1174 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝑆𝐻)
102, 4, 6, 7, 8, 9ovmpt2rdx 42965 1 ((𝐴𝐿𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  (class class class)co 6905  cmpt2 6907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-iota 6086  df-fun 6125  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910
This theorem is referenced by:  lincval  43045
  Copyright terms: Public domain W3C validator