Step | Hyp | Ref
| Expression |
1 | | 2re 11454 |
. . . . 5
⊢ 2 ∈
ℝ |
2 | 1 | a1i 11 |
. . . 4
⊢ (⊤
→ 2 ∈ ℝ) |
3 | | 4re 11465 |
. . . . 5
⊢ 4 ∈
ℝ |
4 | 3 | a1i 11 |
. . . 4
⊢ (⊤
→ 4 ∈ ℝ) |
5 | | 0re 10380 |
. . . . 5
⊢ 0 ∈
ℝ |
6 | 5 | a1i 11 |
. . . 4
⊢ (⊤
→ 0 ∈ ℝ) |
7 | | 2lt4 11562 |
. . . . 5
⊢ 2 <
4 |
8 | 7 | a1i 11 |
. . . 4
⊢ (⊤
→ 2 < 4) |
9 | | iccssre 12572 |
. . . . . . 7
⊢ ((2
∈ ℝ ∧ 4 ∈ ℝ) → (2[,]4) ⊆
ℝ) |
10 | 1, 3, 9 | mp2an 682 |
. . . . . 6
⊢ (2[,]4)
⊆ ℝ |
11 | | ax-resscn 10331 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
12 | 10, 11 | sstri 3830 |
. . . . 5
⊢ (2[,]4)
⊆ ℂ |
13 | 12 | a1i 11 |
. . . 4
⊢ (⊤
→ (2[,]4) ⊆ ℂ) |
14 | | sincn 24646 |
. . . . 5
⊢ sin
∈ (ℂ–cn→ℂ) |
15 | 14 | a1i 11 |
. . . 4
⊢ (⊤
→ sin ∈ (ℂ–cn→ℂ)) |
16 | 10 | sseli 3817 |
. . . . . 6
⊢ (𝑦 ∈ (2[,]4) → 𝑦 ∈
ℝ) |
17 | 16 | resincld 15284 |
. . . . 5
⊢ (𝑦 ∈ (2[,]4) →
(sin‘𝑦) ∈
ℝ) |
18 | 17 | adantl 475 |
. . . 4
⊢
((⊤ ∧ 𝑦
∈ (2[,]4)) → (sin‘𝑦) ∈ ℝ) |
19 | | sin4lt0 15336 |
. . . . . 6
⊢
(sin‘4) < 0 |
20 | | sincos2sgn 15335 |
. . . . . . 7
⊢ (0 <
(sin‘2) ∧ (cos‘2) < 0) |
21 | 20 | simpli 478 |
. . . . . 6
⊢ 0 <
(sin‘2) |
22 | 19, 21 | pm3.2i 464 |
. . . . 5
⊢
((sin‘4) < 0 ∧ 0 < (sin‘2)) |
23 | 22 | a1i 11 |
. . . 4
⊢ (⊤
→ ((sin‘4) < 0 ∧ 0 < (sin‘2))) |
24 | 2, 4, 6, 8, 13, 15, 18, 23 | ivth2 23670 |
. . 3
⊢ (⊤
→ ∃𝑥 ∈
(2(,)4)(sin‘𝑥) =
0) |
25 | 24 | mptru 1609 |
. 2
⊢
∃𝑥 ∈
(2(,)4)(sin‘𝑥) =
0 |
26 | | df-pi 15214 |
. . . . . . 7
⊢ π =
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) |
27 | | elioore 12522 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (2(,)4) → 𝑥 ∈
ℝ) |
28 | 27 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
𝑥 ∈
ℝ) |
29 | 5 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) → 0
∈ ℝ) |
30 | 1 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) → 2
∈ ℝ) |
31 | | 2pos 11490 |
. . . . . . . . . . . 12
⊢ 0 <
2 |
32 | 31 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) → 0
< 2) |
33 | | eliooord 12550 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (2(,)4) → (2 <
𝑥 ∧ 𝑥 < 4)) |
34 | 33 | simpld 490 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (2(,)4) → 2 <
𝑥) |
35 | 34 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) → 2
< 𝑥) |
36 | 29, 30, 28, 32, 35 | lttrd 10539 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) → 0
< 𝑥) |
37 | 28, 36 | elrpd 12183 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
𝑥 ∈
ℝ+) |
38 | | simpr 479 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(sin‘𝑥) =
0) |
39 | | pilem1 24653 |
. . . . . . . . 9
⊢ (𝑥 ∈ (ℝ+
∩ (◡sin “ {0})) ↔ (𝑥 ∈ ℝ+
∧ (sin‘𝑥) =
0)) |
40 | 37, 38, 39 | sylanbrc 578 |
. . . . . . . 8
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
𝑥 ∈
(ℝ+ ∩ (◡sin
“ {0}))) |
41 | | inss1 4053 |
. . . . . . . . . 10
⊢
(ℝ+ ∩ (◡sin
“ {0})) ⊆ ℝ+ |
42 | | rpssre 12149 |
. . . . . . . . . 10
⊢
ℝ+ ⊆ ℝ |
43 | 41, 42 | sstri 3830 |
. . . . . . . . 9
⊢
(ℝ+ ∩ (◡sin
“ {0})) ⊆ ℝ |
44 | 41 | sseli 3817 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (ℝ+
∩ (◡sin “ {0})) → 𝑧 ∈
ℝ+) |
45 | 44 | rpge0d 12190 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (ℝ+
∩ (◡sin “ {0})) → 0 ≤
𝑧) |
46 | 45 | rgen 3104 |
. . . . . . . . . 10
⊢
∀𝑧 ∈
(ℝ+ ∩ (◡sin
“ {0}))0 ≤ 𝑧 |
47 | | breq1 4891 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0 → (𝑦 ≤ 𝑧 ↔ 0 ≤ 𝑧)) |
48 | 47 | ralbidv 3168 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → (∀𝑧 ∈ (ℝ+
∩ (◡sin “ {0}))𝑦 ≤ 𝑧 ↔ ∀𝑧 ∈ (ℝ+ ∩ (◡sin “ {0}))0 ≤ 𝑧)) |
49 | 48 | rspcev 3511 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ ∀𝑧 ∈ (ℝ+ ∩ (◡sin “ {0}))0 ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (◡sin “ {0}))𝑦 ≤ 𝑧) |
50 | 5, 46, 49 | mp2an 682 |
. . . . . . . . 9
⊢
∃𝑦 ∈
ℝ ∀𝑧 ∈
(ℝ+ ∩ (◡sin
“ {0}))𝑦 ≤ 𝑧 |
51 | | infrelb 11367 |
. . . . . . . . 9
⊢
(((ℝ+ ∩ (◡sin “ {0})) ⊆ ℝ ∧
∃𝑦 ∈ ℝ
∀𝑧 ∈
(ℝ+ ∩ (◡sin
“ {0}))𝑦 ≤ 𝑧 ∧ 𝑥 ∈ (ℝ+ ∩ (◡sin “ {0}))) →
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ≤ 𝑥) |
52 | 43, 50, 51 | mp3an12 1524 |
. . . . . . . 8
⊢ (𝑥 ∈ (ℝ+
∩ (◡sin “ {0})) →
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ≤ 𝑥) |
53 | 40, 52 | syl 17 |
. . . . . . 7
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ≤ 𝑥) |
54 | 26, 53 | syl5eqbr 4923 |
. . . . . 6
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
π ≤ 𝑥) |
55 | | simplll 765 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) ∧ 𝑦 ∈ (ℝ+
∩ (◡sin “ {0}))) → 𝑥 ∈
(2(,)4)) |
56 | | simpr 479 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) ∧ 𝑦 ∈ (ℝ+
∩ (◡sin “ {0}))) → 𝑦 ∈ (ℝ+
∩ (◡sin “
{0}))) |
57 | | pilem1 24653 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (ℝ+
∩ (◡sin “ {0})) ↔ (𝑦 ∈ ℝ+
∧ (sin‘𝑦) =
0)) |
58 | 56, 57 | sylib 210 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) ∧ 𝑦 ∈ (ℝ+
∩ (◡sin “ {0}))) →
(𝑦 ∈
ℝ+ ∧ (sin‘𝑦) = 0)) |
59 | 58 | simpld 490 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) ∧ 𝑦 ∈ (ℝ+
∩ (◡sin “ {0}))) → 𝑦 ∈
ℝ+) |
60 | | simpllr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) ∧ 𝑦 ∈ (ℝ+
∩ (◡sin “ {0}))) →
(sin‘𝑥) =
0) |
61 | 58 | simprd 491 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) ∧ 𝑦 ∈ (ℝ+
∩ (◡sin “ {0}))) →
(sin‘𝑦) =
0) |
62 | 55, 59, 60, 61 | pilem2 24654 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) ∧ 𝑦 ∈ (ℝ+
∩ (◡sin “ {0}))) →
((π + 𝑥) / 2) ≤ 𝑦) |
63 | 62 | ralrimiva 3148 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) →
∀𝑦 ∈
(ℝ+ ∩ (◡sin
“ {0}))((π + 𝑥) /
2) ≤ 𝑦) |
64 | 43 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) →
(ℝ+ ∩ (◡sin
“ {0})) ⊆ ℝ) |
65 | | ne0i 4149 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (ℝ+
∩ (◡sin “ {0})) →
(ℝ+ ∩ (◡sin
“ {0})) ≠ ∅) |
66 | 40, 65 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(ℝ+ ∩ (◡sin
“ {0})) ≠ ∅) |
67 | 66 | adantr 474 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) →
(ℝ+ ∩ (◡sin
“ {0})) ≠ ∅) |
68 | 50 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) →
∃𝑦 ∈ ℝ
∀𝑧 ∈
(ℝ+ ∩ (◡sin
“ {0}))𝑦 ≤ 𝑧) |
69 | | infrecl 11364 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ℝ+ ∩ (◡sin “ {0})) ⊆ ℝ ∧
(ℝ+ ∩ (◡sin
“ {0})) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (◡sin “ {0}))𝑦 ≤ 𝑧) → inf((ℝ+ ∩
(◡sin “ {0})), ℝ, < )
∈ ℝ) |
70 | 43, 50, 69 | mp3an13 1525 |
. . . . . . . . . . . . . . . . 17
⊢
((ℝ+ ∩ (◡sin “ {0})) ≠ ∅ →
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ∈ ℝ) |
71 | 66, 70 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ∈ ℝ) |
72 | 26, 71 | syl5eqel 2863 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
π ∈ ℝ) |
73 | 72, 28 | readdcld 10408 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(π + 𝑥) ∈
ℝ) |
74 | 73 | adantr 474 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) → (π +
𝑥) ∈
ℝ) |
75 | 74 | rehalfcld 11634 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) → ((π
+ 𝑥) / 2) ∈
ℝ) |
76 | | infregelb 11366 |
. . . . . . . . . . . 12
⊢
((((ℝ+ ∩ (◡sin “ {0})) ⊆ ℝ ∧
(ℝ+ ∩ (◡sin
“ {0})) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (◡sin “ {0}))𝑦 ≤ 𝑧) ∧ ((π + 𝑥) / 2) ∈ ℝ) → (((π + 𝑥) / 2) ≤
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ↔ ∀𝑦 ∈ (ℝ+ ∩ (◡sin “ {0}))((π + 𝑥) / 2) ≤ 𝑦)) |
77 | 64, 67, 68, 75, 76 | syl31anc 1441 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) → (((π
+ 𝑥) / 2) ≤
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < ) ↔ ∀𝑦 ∈ (ℝ+ ∩ (◡sin “ {0}))((π + 𝑥) / 2) ≤ 𝑦)) |
78 | 63, 77 | mpbird 249 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) → ((π
+ 𝑥) / 2) ≤
inf((ℝ+ ∩ (◡sin
“ {0})), ℝ, < )) |
79 | 78, 26 | syl6breqr 4930 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) ∧
π < 𝑥) → ((π
+ 𝑥) / 2) ≤
π) |
80 | 79 | ex 403 |
. . . . . . . 8
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(π < 𝑥 → ((π
+ 𝑥) / 2) ≤
π)) |
81 | 72, 28 | ltnled 10525 |
. . . . . . . 8
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(π < 𝑥 ↔ ¬
𝑥 ≤
π)) |
82 | 72 | recnd 10407 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
π ∈ ℂ) |
83 | 28 | recnd 10407 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
𝑥 ∈
ℂ) |
84 | 82, 83 | addcomd 10580 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(π + 𝑥) = (𝑥 + π)) |
85 | 84 | oveq1d 6939 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
((π + 𝑥) / 2) = ((𝑥 + π) / 2)) |
86 | 85 | breq1d 4898 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(((π + 𝑥) / 2) ≤ π
↔ ((𝑥 + π) / 2)
≤ π)) |
87 | | avgle2 11628 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ π
∈ ℝ) → (𝑥
≤ π ↔ ((𝑥 +
π) / 2) ≤ π)) |
88 | 28, 72, 87 | syl2anc 579 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(𝑥 ≤ π ↔ ((𝑥 + π) / 2) ≤
π)) |
89 | 86, 88 | bitr4d 274 |
. . . . . . . 8
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(((π + 𝑥) / 2) ≤ π
↔ 𝑥 ≤
π)) |
90 | 80, 81, 89 | 3imtr3d 285 |
. . . . . . 7
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(¬ 𝑥 ≤ π →
𝑥 ≤
π)) |
91 | 90 | pm2.18d 127 |
. . . . . 6
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
𝑥 ≤
π) |
92 | 72, 28 | letri3d 10520 |
. . . . . 6
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(π = 𝑥 ↔ (π ≤
𝑥 ∧ 𝑥 ≤ π))) |
93 | 54, 91, 92 | mpbir2and 703 |
. . . . 5
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
π = 𝑥) |
94 | | simpl 476 |
. . . . 5
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
𝑥 ∈
(2(,)4)) |
95 | 93, 94 | eqeltrd 2859 |
. . . 4
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
π ∈ (2(,)4)) |
96 | 93 | fveq2d 6452 |
. . . . 5
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(sin‘π) = (sin‘𝑥)) |
97 | 96, 38 | eqtrd 2814 |
. . . 4
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(sin‘π) = 0) |
98 | 95, 97 | jca 507 |
. . 3
⊢ ((𝑥 ∈ (2(,)4) ∧
(sin‘𝑥) = 0) →
(π ∈ (2(,)4) ∧ (sin‘π) = 0)) |
99 | 98 | rexlimiva 3210 |
. 2
⊢
(∃𝑥 ∈
(2(,)4)(sin‘𝑥) = 0
→ (π ∈ (2(,)4) ∧ (sin‘π) = 0)) |
100 | 25, 99 | ax-mp 5 |
1
⊢ (π
∈ (2(,)4) ∧ (sin‘π) = 0) |