Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfexOLD Structured version   Visualization version   GIF version

Theorem pnfexOLD 10431
 Description: Obsolete version of pnfex 10429 as of 7-Dec-2022. Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pnfexOLD +∞ ∈ V

Proof of Theorem pnfexOLD
StepHypRef Expression
1 pnfxr 10430 . 2 +∞ ∈ ℝ*
21elexi 3415 1 +∞ ∈ V
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 2107  Vcvv 3398  +∞cpnf 10408  ℝ*cxr 10410 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754  ax-sep 5017  ax-pow 5077  ax-un 7226  ax-cnex 10328 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rex 3096  df-v 3400  df-un 3797  df-in 3799  df-ss 3806  df-pw 4381  df-sn 4399  df-pr 4401  df-uni 4672  df-pnf 10413  df-xr 10415 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator