![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfexOLD | Structured version Visualization version GIF version |
Description: Obsolete version of pnfex 10429 as of 7-Dec-2022. Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pnfexOLD | ⊢ +∞ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 10430 | . 2 ⊢ +∞ ∈ ℝ* | |
2 | 1 | elexi 3415 | 1 ⊢ +∞ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3398 +∞cpnf 10408 ℝ*cxr 10410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 ax-sep 5017 ax-pow 5077 ax-un 7226 ax-cnex 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rex 3096 df-v 3400 df-un 3797 df-in 3799 df-ss 3806 df-pw 4381 df-sn 4399 df-pr 4401 df-uni 4672 df-pnf 10413 df-xr 10415 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |