![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preqsnOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of preqsn 4528 as of 12-Jun-2022. (Contributed by NM, 3-Jun-2008.) (Proof shortened by JJ, 23-Jul-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
preqsn.1 | ⊢ 𝐴 ∈ V |
preqsn.2 | ⊢ 𝐵 ∈ V |
preqsnOLD.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
preqsnOLD | ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4330 | . . 3 ⊢ {𝐶} = {𝐶, 𝐶} | |
2 | 1 | eqeq2i 2783 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐶}) |
3 | oridm 882 | . . 3 ⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) | |
4 | preqsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
5 | preqsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
6 | preqsnOLD.3 | . . . 4 ⊢ 𝐶 ∈ V | |
7 | 4, 5, 6, 6 | preq12b 4514 | . . 3 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
8 | eqeq2 2782 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
9 | 8 | pm5.32ri 559 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
10 | 3, 7, 9 | 3bitr4i 292 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
11 | 2, 10 | bitri 264 | 1 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∨ wo 828 = wceq 1631 ∈ wcel 2145 Vcvv 3351 {csn 4317 {cpr 4319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-un 3729 df-sn 4318 df-pr 4320 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |