![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preqsndOLD | Structured version Visualization version GIF version |
Description: Obsolete version of preqsnd 4609 as of 12-Jun-2022: Hypothesis preqsndOLD.3 is not needed. (Contributed by Thierry Arnoux, 27-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
preqsnd.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
preqsnd.2 | ⊢ (𝜑 → 𝐵 ∈ V) |
preqsndOLD.3 | ⊢ (𝜑 → 𝐶 ∈ V) |
Ref | Expression |
---|---|
preqsndOLD | ⊢ (𝜑 → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preqsnd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | preqsnd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) | |
3 | preqsndOLD.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ V) | |
4 | dfsn2 4412 | . . . 4 ⊢ {𝐶} = {𝐶, 𝐶} | |
5 | 4 | eqeq2i 2837 | . . 3 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐶}) |
6 | preq12bg 4603 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)))) | |
7 | oridm 933 | . . . 4 ⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) | |
8 | 6, 7 | syl6bb 279 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
9 | 5, 8 | syl5bb 275 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
10 | 1, 2, 3, 3, 9 | syl22anc 872 | 1 ⊢ (𝜑 → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 878 = wceq 1656 ∈ wcel 2164 Vcvv 3414 {csn 4399 {cpr 4401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-un 3803 df-sn 4400 df-pr 4402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |