Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probfinmeasbOLD Structured version   Visualization version   GIF version

Theorem probfinmeasbOLD 30830
Description: Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 17-Dec-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
probfinmeasbOLD ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) ∈ Prob)
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆

Proof of Theorem probfinmeasbOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 measdivcstOLD 30627 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) ∈ (measures‘𝑆))
2 ovex 6827 . . . . . . 7 ((𝑀𝑥) /𝑒 (𝑀 𝑆)) ∈ V
32rgenw 3073 . . . . . 6 𝑥𝑆 ((𝑀𝑥) /𝑒 (𝑀 𝑆)) ∈ V
4 dmmptg 5775 . . . . . 6 (∀𝑥𝑆 ((𝑀𝑥) /𝑒 (𝑀 𝑆)) ∈ V → dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) = 𝑆)
53, 4ax-mp 5 . . . . 5 dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) = 𝑆
65fveq2i 6336 . . . 4 (measures‘dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))) = (measures‘𝑆)
71, 6syl6eleqr 2861 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) ∈ (measures‘dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))))
8 measbasedom 30605 . . 3 ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) ∈ ran measures ↔ (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) ∈ (measures‘dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))))
97, 8sylibr 224 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) ∈ ran measures)
105unieqi 4584 . . . 4 dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) = 𝑆
1110fveq2i 6336 . . 3 ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))‘ dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))) = ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))‘ 𝑆)
12 measbase 30600 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
13 isrnsigau 30530 . . . . . . . . 9 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
1413simprd 483 . . . . . . . 8 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
1514simp1d 1136 . . . . . . 7 (𝑆 ran sigAlgebra → 𝑆𝑆)
1612, 15syl 17 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → 𝑆𝑆)
17 id 22 . . . . . . 7 ((𝑀 𝑆) ∈ ℝ+ → (𝑀 𝑆) ∈ ℝ+)
1817, 17rpxdivcld 29982 . . . . . 6 ((𝑀 𝑆) ∈ ℝ+ → ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) ∈ ℝ+)
1916, 18anim12i 600 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ( 𝑆𝑆 ∧ ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) ∈ ℝ+))
20 fveq2 6333 . . . . . . 7 (𝑥 = 𝑆 → (𝑀𝑥) = (𝑀 𝑆))
2120oveq1d 6811 . . . . . 6 (𝑥 = 𝑆 → ((𝑀𝑥) /𝑒 (𝑀 𝑆)) = ((𝑀 𝑆) /𝑒 (𝑀 𝑆)))
22 eqid 2771 . . . . . 6 (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) = (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))
2321, 22fvmptg 6424 . . . . 5 (( 𝑆𝑆 ∧ ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))‘ 𝑆) = ((𝑀 𝑆) /𝑒 (𝑀 𝑆)))
2419, 23syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))‘ 𝑆) = ((𝑀 𝑆) /𝑒 (𝑀 𝑆)))
25 rpre 12042 . . . . . 6 ((𝑀 𝑆) ∈ ℝ+ → (𝑀 𝑆) ∈ ℝ)
26 rpne0 12051 . . . . . 6 ((𝑀 𝑆) ∈ ℝ+ → (𝑀 𝑆) ≠ 0)
27 xdivid 29976 . . . . . 6 (((𝑀 𝑆) ∈ ℝ ∧ (𝑀 𝑆) ≠ 0) → ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) = 1)
2825, 26, 27syl2anc 573 . . . . 5 ((𝑀 𝑆) ∈ ℝ+ → ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) = 1)
2928adantl 467 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) = 1)
3024, 29eqtrd 2805 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))‘ 𝑆) = 1)
3111, 30syl5eq 2817 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))‘ dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))) = 1)
32 elprob 30811 . 2 ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) ∈ Prob ↔ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) ∈ ran measures ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))‘ dom (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆)))) = 1))
339, 31, 32sylanbrc 572 1 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 (𝑀 𝑆))) ∈ Prob)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  Vcvv 3351  cdif 3720  wss 3723  𝒫 cpw 4298   cuni 4575   class class class wbr 4787  cmpt 4864  dom cdm 5250  ran crn 5251  cfv 6030  (class class class)co 6796  ωcom 7216  cdom 8111  cr 10141  0cc0 10142  1c1 10143  +crp 12035   /𝑒 cxdiv 29965  sigAlgebracsiga 30510  measurescmeas 30598  Probcprb 30809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-tset 16168  df-ple 16169  df-ds 16172  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-ordt 16369  df-xrs 16370  df-mre 16454  df-mrc 16455  df-acs 16457  df-ps 17408  df-tsr 17409  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-cntz 17957  df-cmn 18402  df-fbas 19958  df-fg 19959  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-ntr 21045  df-nei 21123  df-cn 21252  df-cnp 21253  df-haus 21340  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-tsms 22150  df-xdiv 29966  df-esum 30430  df-siga 30511  df-meas 30599  df-prob 30810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator