![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > probfinmeasbOLD | Structured version Visualization version GIF version |
Description: Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 17-Dec-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
probfinmeasbOLD | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ Prob) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | measdivcstOLD 31085 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ (measures‘𝑆)) | |
2 | ovex 7002 | . . . . . . 7 ⊢ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) ∈ V | |
3 | 2 | rgenw 3094 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝑆 ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) ∈ V |
4 | dmmptg 5929 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑆 ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) ∈ V → dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = 𝑆) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = 𝑆 |
6 | 5 | fveq2i 6496 | . . . 4 ⊢ (measures‘dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = (measures‘𝑆) |
7 | 1, 6 | syl6eleqr 2871 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ (measures‘dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))))) |
8 | measbasedom 31063 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ ∪ ran measures ↔ (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ (measures‘dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))))) | |
9 | 7, 8 | sylibr 226 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ ∪ ran measures) |
10 | 5 | unieqi 4715 | . . . 4 ⊢ ∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = ∪ 𝑆 |
11 | 10 | fveq2i 6496 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) |
12 | measbase 31058 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
13 | isrnsigau 30988 | . . . . . . . . 9 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
14 | 13 | simprd 488 | . . . . . . . 8 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
15 | 14 | simp1d 1122 | . . . . . . 7 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∪ 𝑆 ∈ 𝑆) |
16 | 12, 15 | syl 17 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → ∪ 𝑆 ∈ 𝑆) |
17 | id 22 | . . . . . . 7 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ∈ ℝ+) | |
18 | 17, 17 | rpxdivcld 30345 | . . . . . 6 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) ∈ ℝ+) |
19 | 16, 18 | anim12i 603 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (∪ 𝑆 ∈ 𝑆 ∧ ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) ∈ ℝ+)) |
20 | fveq2 6493 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑆 → (𝑀‘𝑥) = (𝑀‘∪ 𝑆)) | |
21 | 20 | oveq1d 6985 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑆 → ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
22 | eqid 2772 | . . . . . 6 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) | |
23 | 21, 22 | fvmptg 6587 | . . . . 5 ⊢ ((∪ 𝑆 ∈ 𝑆 ∧ ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
24 | 19, 23 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
25 | rpre 12205 | . . . . . 6 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ∈ ℝ) | |
26 | rpne0 12215 | . . . . . 6 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ≠ 0) | |
27 | xdivid 30339 | . . . . . 6 ⊢ (((𝑀‘∪ 𝑆) ∈ ℝ ∧ (𝑀‘∪ 𝑆) ≠ 0) → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) | |
28 | 25, 26, 27 | syl2anc 576 | . . . . 5 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) |
29 | 28 | adantl 474 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) |
30 | 24, 29 | eqtrd 2808 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) = 1) |
31 | 11, 30 | syl5eq 2820 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = 1) |
32 | elprob 31270 | . 2 ⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ Prob ↔ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ ∪ ran measures ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = 1)) | |
33 | 9, 31, 32 | sylanbrc 575 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ Prob) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 ∀wral 3082 Vcvv 3409 ∖ cdif 3822 ⊆ wss 3825 𝒫 cpw 4416 ∪ cuni 4706 class class class wbr 4923 ↦ cmpt 5002 dom cdm 5400 ran crn 5401 ‘cfv 6182 (class class class)co 6970 ωcom 7390 ≼ cdom 8296 ℝcr 10326 0cc0 10327 1c1 10328 ℝ+crp 12197 /𝑒 cxdiv 30328 sigAlgebracsiga 30968 measurescmeas 31056 Probcprb 31268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-iin 4789 df-disj 4892 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-of 7221 df-om 7391 df-1st 7494 df-2nd 7495 df-supp 7627 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-map 8200 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-fsupp 8621 df-fi 8662 df-sup 8693 df-inf 8694 df-oi 8761 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-9 11503 df-n0 11701 df-z 11787 df-dec 11905 df-uz 12052 df-q 12156 df-rp 12198 df-xneg 12317 df-xadd 12318 df-xmul 12319 df-ioo 12551 df-ioc 12552 df-ico 12553 df-icc 12554 df-fz 12702 df-fzo 12843 df-seq 13178 df-hash 13499 df-struct 16331 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mulr 16425 df-tset 16430 df-ple 16431 df-ds 16433 df-rest 16542 df-topn 16543 df-0g 16561 df-gsum 16562 df-topgen 16563 df-ordt 16620 df-xrs 16621 df-mre 16705 df-mrc 16706 df-acs 16708 df-ps 17658 df-tsr 17659 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-mhm 17793 df-submnd 17794 df-cntz 18208 df-cmn 18658 df-fbas 20234 df-fg 20235 df-top 21196 df-topon 21213 df-topsp 21235 df-bases 21248 df-ntr 21322 df-nei 21400 df-cn 21529 df-cnp 21530 df-haus 21617 df-fil 22148 df-fm 22240 df-flim 22241 df-flf 22242 df-tsms 22428 df-xdiv 30329 df-esum 30888 df-siga 30969 df-meas 31057 df-prob 31269 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |