![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwcda1 | Structured version Visualization version GIF version |
Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
pwcda1 | ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 (𝐴 +𝑐 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 7833 | . . . 4 ⊢ 1o ∈ On | |
2 | pwcdaen 9322 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1o ∈ On) → 𝒫 (𝐴 +𝑐 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) | |
3 | 1, 2 | mpan2 682 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 +𝑐 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) |
4 | pwpw0 4562 | . . . . . 6 ⊢ 𝒫 {∅} = {∅, {∅}} | |
5 | df1o2 7839 | . . . . . . 7 ⊢ 1o = {∅} | |
6 | 5 | pweqi 4382 | . . . . . 6 ⊢ 𝒫 1o = 𝒫 {∅} |
7 | df2o2 7841 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
8 | 4, 6, 7 | 3eqtr4i 2859 | . . . . 5 ⊢ 𝒫 1o = 2o |
9 | 8 | xpeq2i 5369 | . . . 4 ⊢ (𝒫 𝐴 × 𝒫 1o) = (𝒫 𝐴 × 2o) |
10 | pwexg 5078 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
11 | xp2cda 9317 | . . . . 5 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 × 2o) = (𝒫 𝐴 +𝑐 𝒫 𝐴)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 × 2o) = (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
13 | 9, 12 | syl5eq 2873 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 × 𝒫 1o) = (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
14 | 3, 13 | breqtrd 4899 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 +𝑐 1o) ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
15 | 14 | ensymd 8273 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 (𝐴 +𝑐 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ∅c0 4144 𝒫 cpw 4378 {csn 4397 {cpr 4399 class class class wbr 4873 × cxp 5340 Oncon0 5963 (class class class)co 6905 1oc1o 7819 2oc2o 7820 ≈ cen 8219 +𝑐 ccda 9304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-ord 5966 df-on 5967 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-1o 7826 df-2o 7827 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-cda 9305 |
This theorem is referenced by: pwcdaidm 9332 cdalepw 9333 pwsdompw 9341 gchcdaidm 9805 gchpwdom 9807 |
Copyright terms: Public domain | W3C validator |