![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwcdandom | Structured version Visualization version GIF version |
Description: The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
Ref | Expression |
---|---|
pwcdandom | ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 +𝑐 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwxpndom2 9824 | . 2 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴))) | |
2 | df1o2 7858 | . . . . . . 7 ⊢ 1o = {∅} | |
3 | 2 | xpeq2i 5384 | . . . . . 6 ⊢ (𝐴 × 1o) = (𝐴 × {∅}) |
4 | reldom 8249 | . . . . . . . 8 ⊢ Rel ≼ | |
5 | 4 | brrelex2i 5409 | . . . . . . 7 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
6 | 0ex 5028 | . . . . . . 7 ⊢ ∅ ∈ V | |
7 | xpsneng 8335 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴) | |
8 | 5, 6, 7 | sylancl 580 | . . . . . 6 ⊢ (ω ≼ 𝐴 → (𝐴 × {∅}) ≈ 𝐴) |
9 | 3, 8 | syl5eqbr 4923 | . . . . 5 ⊢ (ω ≼ 𝐴 → (𝐴 × 1o) ≈ 𝐴) |
10 | 9 | ensymd 8294 | . . . 4 ⊢ (ω ≼ 𝐴 → 𝐴 ≈ (𝐴 × 1o)) |
11 | omex 8839 | . . . . . . 7 ⊢ ω ∈ V | |
12 | ordom 7354 | . . . . . . . 8 ⊢ Ord ω | |
13 | 1onn 8005 | . . . . . . . 8 ⊢ 1o ∈ ω | |
14 | ordelss 5994 | . . . . . . . 8 ⊢ ((Ord ω ∧ 1o ∈ ω) → 1o ⊆ ω) | |
15 | 12, 13, 14 | mp2an 682 | . . . . . . 7 ⊢ 1o ⊆ ω |
16 | ssdomg 8289 | . . . . . . 7 ⊢ (ω ∈ V → (1o ⊆ ω → 1o ≼ ω)) | |
17 | 11, 15, 16 | mp2 9 | . . . . . 6 ⊢ 1o ≼ ω |
18 | domtr 8296 | . . . . . 6 ⊢ ((1o ≼ ω ∧ ω ≼ 𝐴) → 1o ≼ 𝐴) | |
19 | 17, 18 | mpan 680 | . . . . 5 ⊢ (ω ≼ 𝐴 → 1o ≼ 𝐴) |
20 | xpdom2g 8346 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 1o ≼ 𝐴) → (𝐴 × 1o) ≼ (𝐴 × 𝐴)) | |
21 | 5, 19, 20 | syl2anc 579 | . . . 4 ⊢ (ω ≼ 𝐴 → (𝐴 × 1o) ≼ (𝐴 × 𝐴)) |
22 | endomtr 8301 | . . . 4 ⊢ ((𝐴 ≈ (𝐴 × 1o) ∧ (𝐴 × 1o) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴)) | |
23 | 10, 21, 22 | syl2anc 579 | . . 3 ⊢ (ω ≼ 𝐴 → 𝐴 ≼ (𝐴 × 𝐴)) |
24 | cdadom2 9346 | . . 3 ⊢ (𝐴 ≼ (𝐴 × 𝐴) → (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 (𝐴 × 𝐴))) | |
25 | domtr 8296 | . . . 4 ⊢ ((𝒫 𝐴 ≼ (𝐴 +𝑐 𝐴) ∧ (𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴))) | |
26 | 25 | expcom 404 | . . 3 ⊢ ((𝐴 +𝑐 𝐴) ≼ (𝐴 +𝑐 (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴 +𝑐 𝐴) → 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)))) |
27 | 23, 24, 26 | 3syl 18 | . 2 ⊢ (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 +𝑐 𝐴) → 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)))) |
28 | 1, 27 | mtod 190 | 1 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 +𝑐 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 Vcvv 3398 ⊆ wss 3792 ∅c0 4141 𝒫 cpw 4379 {csn 4398 class class class wbr 4888 × cxp 5355 Ord word 5977 (class class class)co 6924 ωcom 7345 1oc1o 7838 ≈ cen 8240 ≼ cdom 8241 +𝑐 ccda 9326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-seqom 7828 df-1o 7845 df-2o 7846 df-oadd 7849 df-omul 7850 df-oexp 7851 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-oi 8706 df-har 8754 df-cnf 8858 df-card 9100 df-cda 9327 |
This theorem is referenced by: gchcdaidm 9827 |
Copyright terms: Public domain | W3C validator |