![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwm1geoserALT | Structured version Visualization version GIF version |
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This alternate proof of pwm1geoser 14938 is not based on geoser 14937, but on pwdif 42283 and therefore shorter than the original proof. (Contributed by AV, 19-Aug-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pwm1geoserALT.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pwm1geoserALT.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
pwm1geoserALT | ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwm1geoserALT.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | 1 | nn0zd 11770 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
3 | 1exp 13143 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (1↑𝑁) = 1) |
5 | 4 | eqcomd 2805 | . . 3 ⊢ (𝜑 → 1 = (1↑𝑁)) |
6 | 5 | oveq2d 6894 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴↑𝑁) − (1↑𝑁))) |
7 | pwm1geoserALT.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
8 | 1cnd 10323 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
9 | pwdif 42283 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))))) | |
10 | 1, 7, 8, 9 | syl3anc 1491 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))))) |
11 | fzoval 12726 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1))) | |
12 | 2, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^𝑁) = (0...(𝑁 − 1))) |
13 | 2 | adantr 473 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
14 | elfzoelz 12725 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ) | |
15 | 14 | adantl 474 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ) |
16 | 13, 15 | zsubcld 11777 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑁 − 𝑘) ∈ ℤ) |
17 | peano2zm 11710 | . . . . . . 7 ⊢ ((𝑁 − 𝑘) ∈ ℤ → ((𝑁 − 𝑘) − 1) ∈ ℤ) | |
18 | 1exp 13143 | . . . . . . 7 ⊢ (((𝑁 − 𝑘) − 1) ∈ ℤ → (1↑((𝑁 − 𝑘) − 1)) = 1) | |
19 | 16, 17, 18 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (1↑((𝑁 − 𝑘) − 1)) = 1) |
20 | 19 | oveq2d 6894 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = ((𝐴↑𝑘) · 1)) |
21 | 7 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐴 ∈ ℂ) |
22 | elfzonn0 12768 | . . . . . . . 8 ⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℕ0) | |
23 | 22 | adantl 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0) |
24 | 21, 23 | expcld 13262 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐴↑𝑘) ∈ ℂ) |
25 | 24 | mulid1d 10346 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · 1) = (𝐴↑𝑘)) |
26 | 20, 25 | eqtrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = (𝐴↑𝑘)) |
27 | 12, 26 | sumeq12dv 14778 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)) |
28 | 27 | oveq2d 6894 | . 2 ⊢ (𝜑 → ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1)))) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
29 | 6, 10, 28 | 3eqtrd 2837 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 (class class class)co 6878 ℂcc 10222 0cc0 10224 1c1 10225 · cmul 10229 − cmin 10556 ℕ0cn0 11580 ℤcz 11666 ...cfz 12580 ..^cfzo 12720 ↑cexp 13114 Σcsu 14757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-rp 12075 df-fz 12581 df-fzo 12721 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-sum 14758 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |