![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqif | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 3403. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabeqf.1 | ⊢ Ⅎ𝑥𝐴 |
rabeqf.2 | ⊢ Ⅎ𝑥𝐵 |
rabeqif.3 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rabeqif | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqif.3 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rabeqf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | rabeqf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | rabeqf 3403 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 Ⅎwnfc 2956 {crab 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rab 3126 |
This theorem is referenced by: rabeqi 3406 rabrabi 3413 extwwlkfab 27736 extwwlkfabOLD 27737 smfliminf 41825 |
Copyright terms: Public domain | W3C validator |