MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcom2w Structured version   Visualization version   GIF version

Theorem ralcom2w 3361
Description: Version of ralcom2 3362 with a disjoint variable condition, which does not require ax-13 2383. (Contributed by Gino Giotto, 10-Jan-2024.)
Assertion
Ref Expression
ralcom2w (∀𝑥𝐴𝑦𝐴 𝜑 → ∀𝑦𝐴𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ralcom2w
StepHypRef Expression
1 sp 2174 . . . . . . 7 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
21eleq1d 2895 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
32imbi1d 344 . . . . . . . . 9 (∀𝑥 𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜑)))
43dral1v 2380 . . . . . . . 8 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑦(𝑦𝐴𝜑)))
54bicomd 225 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → (∀𝑦(𝑦𝐴𝜑) ↔ ∀𝑥(𝑥𝐴𝜑)))
6 df-ral 3141 . . . . . . 7 (∀𝑦𝐴 𝜑 ↔ ∀𝑦(𝑦𝐴𝜑))
7 df-ral 3141 . . . . . . 7 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
85, 6, 73bitr4g 316 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑))
92, 8imbi12d 347 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ((𝑥𝐴 → ∀𝑦𝐴 𝜑) ↔ (𝑦𝐴 → ∀𝑥𝐴 𝜑)))
109dral1v 2380 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥𝐴 → ∀𝑦𝐴 𝜑) ↔ ∀𝑦(𝑦𝐴 → ∀𝑥𝐴 𝜑)))
11 df-ral 3141 . . . 4 (∀𝑥𝐴𝑦𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 𝜑))
12 df-ral 3141 . . . 4 (∀𝑦𝐴𝑥𝐴 𝜑 ↔ ∀𝑦(𝑦𝐴 → ∀𝑥𝐴 𝜑))
1310, 11, 123bitr4g 316 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝐴𝑦𝐴 𝜑 ↔ ∀𝑦𝐴𝑥𝐴 𝜑))
1413biimpd 231 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝐴𝑦𝐴 𝜑 → ∀𝑦𝐴𝑥𝐴 𝜑))
15 nfnaew 2146 . . . . 5 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
16 nfra2w 3225 . . . . 5 𝑦𝑥𝐴𝑦𝐴 𝜑
1715, 16nfan 1893 . . . 4 𝑦(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝐴𝑦𝐴 𝜑)
18 nfnaew 2146 . . . . . . . 8 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
19 nfra1 3217 . . . . . . . 8 𝑥𝑥𝐴𝑦𝐴 𝜑
2018, 19nfan 1893 . . . . . . 7 𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝐴𝑦𝐴 𝜑)
21 nfvd 1909 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝐴𝑦𝐴 𝜑) → Ⅎ𝑥 𝑦𝐴)
2220, 21nfan1 2192 . . . . . 6 𝑥((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝐴𝑦𝐴 𝜑) ∧ 𝑦𝐴)
23 rsp2 3211 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐴 𝜑 → ((𝑥𝐴𝑦𝐴) → 𝜑))
2423ancomsd 468 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴 𝜑 → ((𝑦𝐴𝑥𝐴) → 𝜑))
2524expdimp 455 . . . . . . 7 ((∀𝑥𝐴𝑦𝐴 𝜑𝑦𝐴) → (𝑥𝐴𝜑))
2625adantll 712 . . . . . 6 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝐴𝑦𝐴 𝜑) ∧ 𝑦𝐴) → (𝑥𝐴𝜑))
2722, 26ralrimi 3214 . . . . 5 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝐴𝑦𝐴 𝜑) ∧ 𝑦𝐴) → ∀𝑥𝐴 𝜑)
2827ex 415 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝐴𝑦𝐴 𝜑) → (𝑦𝐴 → ∀𝑥𝐴 𝜑))
2917, 28ralrimi 3214 . . 3 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝐴𝑦𝐴 𝜑) → ∀𝑦𝐴𝑥𝐴 𝜑)
3029ex 415 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥𝐴𝑦𝐴 𝜑 → ∀𝑦𝐴𝑥𝐴 𝜑))
3114, 30pm2.61i 183 1 (∀𝑥𝐴𝑦𝐴 𝜑 → ∀𝑦𝐴𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wal 1528  wcel 2107  wral 3136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141
This theorem is referenced by:  tz7.48lem  8069  fvineqsnf1  34673  imo72b2  40505  tratrb  40850
  Copyright terms: Public domain W3C validator