![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > readdid2addid1d | Structured version Visualization version GIF version |
Description: Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 10552, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.) |
Ref | Expression |
---|---|
readdid2addid1d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
readdid2addid1d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
readdid2addid1d.1 | ⊢ (𝜑 → (𝐵 + 𝐴) = 𝐵) |
Ref | Expression |
---|---|
readdid2addid1d | ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdid2addid1d.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | 1 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) |
3 | 2 | recnd 10407 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) |
4 | readdid2addid1d.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | 4 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) |
6 | 5 | recnd 10407 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) |
7 | simpr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
8 | 7 | recnd 10407 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
9 | 3, 6, 8 | addassd 10401 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶))) |
10 | readdid2addid1d.1 | . . . . 5 ⊢ (𝜑 → (𝐵 + 𝐴) = 𝐵) | |
11 | 10 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐴) = 𝐵) |
12 | 11 | oveq1d 6939 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + 𝐶)) |
13 | 9, 12 | eqtr3d 2816 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶)) |
14 | 5, 7 | readdcld 10408 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ) |
15 | readdcan 10552 | . . 3 ⊢ (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶)) | |
16 | 14, 7, 2, 15 | syl3anc 1439 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶)) |
17 | 13, 16 | mpbid 224 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 (class class class)co 6924 ℝcr 10273 + caddc 10277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-resscn 10331 ax-addrcl 10335 ax-addass 10339 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-po 5276 df-so 5277 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-ltxr 10418 |
This theorem is referenced by: reneg0addid1 38193 |
Copyright terms: Public domain | W3C validator |