Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readdid2addid1d Structured version   Visualization version   GIF version

Theorem readdid2addid1d 38192
Description: Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 10552, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.)
Hypotheses
Ref Expression
readdid2addid1d.a (𝜑𝐴 ∈ ℝ)
readdid2addid1d.b (𝜑𝐵 ∈ ℝ)
readdid2addid1d.1 (𝜑 → (𝐵 + 𝐴) = 𝐵)
Assertion
Ref Expression
readdid2addid1d ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)

Proof of Theorem readdid2addid1d
StepHypRef Expression
1 readdid2addid1d.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
21adantr 474 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
32recnd 10407 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
4 readdid2addid1d.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
54adantr 474 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
65recnd 10407 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
7 simpr 479 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
87recnd 10407 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
93, 6, 8addassd 10401 . . 3 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶)))
10 readdid2addid1d.1 . . . . 5 (𝜑 → (𝐵 + 𝐴) = 𝐵)
1110adantr 474 . . . 4 ((𝜑𝐶 ∈ ℝ) → (𝐵 + 𝐴) = 𝐵)
1211oveq1d 6939 . . 3 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + 𝐶))
139, 12eqtr3d 2816 . 2 ((𝜑𝐶 ∈ ℝ) → (𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶))
145, 7readdcld 10408 . . 3 ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
15 readdcan 10552 . . 3 (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶))
1614, 7, 2, 15syl3anc 1439 . 2 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶))
1713, 16mpbid 224 1 ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  (class class class)co 6924  cr 10273   + caddc 10277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-resscn 10331  ax-addrcl 10335  ax-addass 10339  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-ltxr 10418
This theorem is referenced by:  reneg0addid1  38193
  Copyright terms: Public domain W3C validator