![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reneg0addid1 | Structured version Visualization version GIF version |
Description: Negative zero is a left additive identity. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
reneg0addid1 | ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 0) + 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re 38134 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | rernegcl 38172 | . . 3 ⊢ (0 ∈ ℝ → (0 −ℝ 0) ∈ ℝ) | |
3 | elre0re 38134 | . . 3 ⊢ (0 ∈ ℝ → 0 ∈ ℝ) | |
4 | renegid 38174 | . . 3 ⊢ (0 ∈ ℝ → (0 + (0 −ℝ 0)) = 0) | |
5 | 2, 3, 4 | readdid2addid1d 38175 | . 2 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 −ℝ 0) + 𝐴) = 𝐴) |
6 | 1, 5 | mpancom 678 | 1 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 0) + 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 (class class class)co 6922 ℝcr 10271 0cc0 10272 + caddc 10275 −ℝ cresub 38166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-addrcl 10333 ax-addass 10337 ax-rnegex 10343 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-resub 38167 |
This theorem is referenced by: resubeulem2 38178 |
Copyright terms: Public domain | W3C validator |