![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reubidvaOLD | Structured version Visualization version GIF version |
Description: Obsolete version of reubidva 3347 as of 14-Jan-2023. (Contributed by NM, 13-Nov-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
reubidvaOLD.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reubidvaOLD | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1892 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | reubidvaOLD.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | reubida 3346 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∈ wcel 2081 ∃!wreu 3107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-12 2141 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-nf 1766 df-mo 2576 df-eu 2612 df-reu 3112 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |