MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuccats1OLD Structured version   Visualization version   GIF version

Theorem reuccats1OLD 13854
Description: Obsolete proof of reuccatpfxs1 13889 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
reuccats1.1 𝑣𝑋
Assertion
Ref Expression
reuccats1OLD ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩)))
Distinct variable groups:   𝑣,𝑉,𝑥   𝑣,𝑊,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem reuccats1OLD
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2842 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ Word 𝑉𝑦 ∈ Word 𝑉))
2 fveqeq2 6457 . . . 4 (𝑥 = 𝑦 → ((♯‘𝑥) = ((♯‘𝑊) + 1) ↔ (♯‘𝑦) = ((♯‘𝑊) + 1)))
31, 2anbi12d 624 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))))
43cbvralv 3367 . 2 (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
5 reuccats1.1 . . . . 5 𝑣𝑋
65nfel2 2950 . . . 4 𝑣(𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋
75nfel2 2950 . . . 4 𝑣(𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋
8 s1eq 13696 . . . . . 6 (𝑣 = 𝑥 → ⟨“𝑣”⟩ = ⟨“𝑥”⟩)
98oveq2d 6940 . . . . 5 (𝑣 = 𝑥 → (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“𝑥”⟩))
109eleq1d 2844 . . . 4 (𝑣 = 𝑥 → ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋))
11 s1eq 13696 . . . . . 6 (𝑥 = 𝑢 → ⟨“𝑥”⟩ = ⟨“𝑢”⟩)
1211oveq2d 6940 . . . . 5 (𝑥 = 𝑢 → (𝑊 ++ ⟨“𝑥”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
1312eleq1d 2844 . . . 4 (𝑥 = 𝑢 → ((𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
146, 7, 10, 13reu8nf 3733 . . 3 (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ ∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)))
15 nfv 1957 . . . . 5 𝑣 𝑊 ∈ Word 𝑉
16 nfv 1957 . . . . . 6 𝑣(𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))
175, 16nfral 3127 . . . . 5 𝑣𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))
1815, 17nfan 1946 . . . 4 𝑣(𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
19 nfv 1957 . . . . 5 𝑣 𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩)
205, 19nfreu 3300 . . . 4 𝑣∃!𝑥𝑋 𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩)
21 simprl 761 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋)
22 simp-4l 773 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → 𝑊 ∈ Word 𝑉)
23 simpr 479 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → 𝑥𝑋)
2421adantr 474 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋)
25 simplrr 768 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))
26 simp-4r 774 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
27 reuccats1lemOLD 13853 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑥𝑋 ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋) ∧ (∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢) ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))) → (𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩) → 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
2822, 23, 24, 25, 26, 27syl32anc 1446 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩) → 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
29 oveq1 6931 . . . . . . . . . . 11 (𝑥 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑥 substr ⟨0, (♯‘𝑊)⟩) = ((𝑊 ++ ⟨“𝑣”⟩) substr ⟨0, (♯‘𝑊)⟩))
30 simpl 476 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
31 s1cl 13698 . . . . . . . . . . . . . . 15 (𝑣𝑉 → ⟨“𝑣”⟩ ∈ Word 𝑉)
3230, 31anim12i 606 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉))
3332adantr 474 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉))
3433adantr 474 . . . . . . . . . . . 12 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉))
35 swrdccat1OLD 13783 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
3634, 35syl 17 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ((𝑊 ++ ⟨“𝑣”⟩) substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
3729, 36sylan9eqr 2836 . . . . . . . . . 10 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) ∧ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑥 substr ⟨0, (♯‘𝑊)⟩) = 𝑊)
3837eqcomd 2784 . . . . . . . . 9 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) ∧ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)) → 𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩))
3938ex 403 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑥 = (𝑊 ++ ⟨“𝑣”⟩) → 𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩)))
4028, 39impbid 204 . . . . . . 7 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
4140ralrimiva 3148 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∀𝑥𝑋 (𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
42 reu6i 3609 . . . . . 6 (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑥𝑋 (𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩))) → ∃!𝑥𝑋 𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩))
4321, 41, 42syl2anc 579 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∃!𝑥𝑋 𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩))
4443exp31 412 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (𝑣𝑉 → (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑥𝑋 𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩))))
4518, 20, 44rexlimd 3208 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑥𝑋 𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩)))
4614, 45syl5bi 234 . 2 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩)))
474, 46sylan2b 587 1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 substr ⟨0, (♯‘𝑊)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wnfc 2919  wral 3090  wrex 3091  ∃!wreu 3092  cop 4404  cfv 6137  (class class class)co 6924  0cc0 10274  1c1 10275   + caddc 10277  chash 13441  Word cword 13605   ++ cconcat 13666  ⟨“cs1 13691   substr csubstr 13736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-n0 11648  df-xnn0 11720  df-z 11734  df-uz 11998  df-fz 12649  df-fzo 12790  df-hash 13442  df-word 13606  df-lsw 13659  df-concat 13667  df-s1 13692  df-substr 13737
This theorem is referenced by:  reuccats1vOLD  13855  numclwlk2lem2f1oOLD  27827
  Copyright terms: Public domain W3C validator