Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuxfr3d Structured version   Visualization version   GIF version

Theorem reuxfr3d 29845
 Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Cf. reuxfr2d 5088. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
reuxfr3d.1 ((𝜑𝑦𝐶) → 𝐴𝐵)
reuxfr3d.2 ((𝜑𝑥𝐵) → ∃*𝑦𝐶 𝑥 = 𝐴)
Assertion
Ref Expression
reuxfr3d (𝜑 → (∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜓) ↔ ∃!𝑦𝐶 𝜓))
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem reuxfr3d
StepHypRef Expression
1 reuxfr3d.2 . . . . . . 7 ((𝜑𝑥𝐵) → ∃*𝑦𝐶 𝑥 = 𝐴)
2 rmoan 3603 . . . . . . 7 (∃*𝑦𝐶 𝑥 = 𝐴 → ∃*𝑦𝐶 (𝜓𝑥 = 𝐴))
31, 2syl 17 . . . . . 6 ((𝜑𝑥𝐵) → ∃*𝑦𝐶 (𝜓𝑥 = 𝐴))
4 ancom 453 . . . . . . 7 ((𝜓𝑥 = 𝐴) ↔ (𝑥 = 𝐴𝜓))
54rmobii 3315 . . . . . 6 (∃*𝑦𝐶 (𝜓𝑥 = 𝐴) ↔ ∃*𝑦𝐶 (𝑥 = 𝐴𝜓))
63, 5sylib 210 . . . . 5 ((𝜑𝑥𝐵) → ∃*𝑦𝐶 (𝑥 = 𝐴𝜓))
76ralrimiva 3146 . . . 4 (𝜑 → ∀𝑥𝐵 ∃*𝑦𝐶 (𝑥 = 𝐴𝜓))
8 2reuswap 3607 . . . 4 (∀𝑥𝐵 ∃*𝑦𝐶 (𝑥 = 𝐴𝜓) → (∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜓) → ∃!𝑦𝐶𝑥𝐵 (𝑥 = 𝐴𝜓)))
97, 8syl 17 . . 3 (𝜑 → (∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜓) → ∃!𝑦𝐶𝑥𝐵 (𝑥 = 𝐴𝜓)))
10 2reuswap2 29844 . . . 4 (∀𝑦𝐶 ∃*𝑥(𝑥𝐵 ∧ (𝑥 = 𝐴𝜓)) → (∃!𝑦𝐶𝑥𝐵 (𝑥 = 𝐴𝜓) → ∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜓)))
11 moeq 3571 . . . . . . 7 ∃*𝑥 𝑥 = 𝐴
1211moani 2679 . . . . . 6 ∃*𝑥((𝑥𝐵𝜓) ∧ 𝑥 = 𝐴)
13 ancom 453 . . . . . . . 8 (((𝑥𝐵𝜓) ∧ 𝑥 = 𝐴) ↔ (𝑥 = 𝐴 ∧ (𝑥𝐵𝜓)))
14 an12 636 . . . . . . . 8 ((𝑥 = 𝐴 ∧ (𝑥𝐵𝜓)) ↔ (𝑥𝐵 ∧ (𝑥 = 𝐴𝜓)))
1513, 14bitri 267 . . . . . . 7 (((𝑥𝐵𝜓) ∧ 𝑥 = 𝐴) ↔ (𝑥𝐵 ∧ (𝑥 = 𝐴𝜓)))
1615mobii 2594 . . . . . 6 (∃*𝑥((𝑥𝐵𝜓) ∧ 𝑥 = 𝐴) ↔ ∃*𝑥(𝑥𝐵 ∧ (𝑥 = 𝐴𝜓)))
1712, 16mpbi 222 . . . . 5 ∃*𝑥(𝑥𝐵 ∧ (𝑥 = 𝐴𝜓))
1817a1i 11 . . . 4 (𝑦𝐶 → ∃*𝑥(𝑥𝐵 ∧ (𝑥 = 𝐴𝜓)))
1910, 18mprg 3106 . . 3 (∃!𝑦𝐶𝑥𝐵 (𝑥 = 𝐴𝜓) → ∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜓))
209, 19impbid1 217 . 2 (𝜑 → (∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜓) ↔ ∃!𝑦𝐶𝑥𝐵 (𝑥 = 𝐴𝜓)))
21 reuxfr3d.1 . . . 4 ((𝜑𝑦𝐶) → 𝐴𝐵)
22 biidd 254 . . . . 5 (𝑥 = 𝐴 → (𝜓𝜓))
2322ceqsrexv 3524 . . . 4 (𝐴𝐵 → (∃𝑥𝐵 (𝑥 = 𝐴𝜓) ↔ 𝜓))
2421, 23syl 17 . . 3 ((𝜑𝑦𝐶) → (∃𝑥𝐵 (𝑥 = 𝐴𝜓) ↔ 𝜓))
2524reubidva 3306 . 2 (𝜑 → (∃!𝑦𝐶𝑥𝐵 (𝑥 = 𝐴𝜓) ↔ ∃!𝑦𝐶 𝜓))
2620, 25bitrd 271 1 (𝜑 → (∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜓) ↔ ∃!𝑦𝐶 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 385   = wceq 1653   ∈ wcel 2157  ∃*wmo 2589  ∀wral 3088  ∃wrex 3089  ∃!wreu 3090  ∃*wrmo 3091 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-v 3386 This theorem is referenced by:  reuxfr4d  29846
 Copyright terms: Public domain W3C validator