![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexrnmpt2 | Structured version Visualization version GIF version |
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
ralrnmpt2.2 | ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexrnmpt2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngop.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | ralrnmpt2.2 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 310 | . . . 4 ⊢ (𝑧 = 𝐶 → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | 1, 3 | ralrnmpt2 7052 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓)) |
5 | 4 | notbid 310 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓)) |
6 | dfrex2 3176 | . 2 ⊢ (∃𝑧 ∈ ran 𝐹𝜑 ↔ ¬ ∀𝑧 ∈ ran 𝐹 ¬ 𝜑) | |
7 | dfrex2 3176 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) | |
8 | 7 | rexbii 3223 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) |
9 | rexnal 3175 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓) | |
10 | 8, 9 | bitri 267 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜓) |
11 | 5, 6, 10 | 3bitr4g 306 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 = wceq 1601 ∈ wcel 2106 ∀wral 3089 ∃wrex 3090 ran crn 5356 ↦ cmpt2 6924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4887 df-opab 4949 df-cnv 5363 df-dm 5365 df-rn 5366 df-oprab 6926 df-mpt2 6927 |
This theorem is referenced by: lsmass 18467 eltx 21780 txrest 21843 txlm 21860 ptrest 34018 |
Copyright terms: Public domain | W3C validator |